前述
EasyDL平台上具备简易方便的数据处理功能,增强清晰等功能很方便,数据集虽然不能下载,但可以和paddle平台互通,处理起来相当方便。训练好的模型部署起来相对麻烦,操作文档也比较老旧,对于新用户来操作,会有许多坑。这里来讲述一下,我遇到的问题。
官方文档
基础环境
ubuntu18.04 x86_64
paddlepaddle-gpu 1.8.5.post107 (文档写的1.2版本的,但是太旧了,已经连demo都跑不起来了,建议采用和我相同的版本)
cuda-10.1 (对应paddle版本)
cudnn7.6.5 (对应cuda版本)
基础版非必要组件:
OpenVINO™ toolkit 3.1LTS(这个下载链接,官方文档里只有个总官网,一开始还找了半天在哪里下载,这里直接给出下载地址)
pytorch(没下)
这里的easydl python wheel包,需要从这个页面下载SDK压缩包
解压后,在python文件夹中,找到对应.whl文件,主要对应python版本即可。
遇到的问题
cuda版本问题
最开始我也尝试过使用官方教程内提到的paddlepaddle-gpu 1.2.0版本,但是运行SDK包内的demo.py时,一直报错缺少模组,询问官方后,得到的建议是采用新版本的paddle。
新的paddle安装很容易,安装教程,但是cuda的切换没什么经验的话,就会很痛苦。
可以看我之前写的这篇教程 多版本CUDA共存并可手动切换
TensorRT的安装
这里自然下载的不是 7.0.0.11 for cuda9.0,而是
TensorRT 5.1.2.2 RC for Ubuntu 18.04 and CUDA 10.1 tar package
下载后,打开cpp文件夹,解压中间的文件夹,虽然是cuda10.0的,但实践过cuda10.1也支持的。原文件名太长,我就自己改短了。
下载完解压后,将TensorRT 文件夹 lib内的文件全部选中复制到 刚解压出来的文件夹 内的lib文件夹里,重名的直接替换。
然后是对文档内给的指令进行解释,有部分是没用的。
cd ${SDK_ROOT} # 跳转到SDK目录下进行操作
# 1. 安装 python wheel 包
tar -xzvf python/*.tar.gz # 意义不明,不需要使用
pip install -U {对应 Python 版本的 wheel 包} # 这里前面已经安装过了,这里不需要重复
# 2. 设置 LD_LIBRARY_PATH
tar -xzvf cpp/*.tar.gz # 不需要全解压,只需要解压对应cuda版本的,即10.0的
# 这里不能直接用,需要跳转到cpp文件夹内才行。但这里也可以按我后面提到的操作实施。
export EDGE_ROOT=$(readlink -f $(ls -h | grep "baidu_easyedge_linux_cpp"))
export LD_LIBRARY_PATH=$EDGE_ROOT/lib # 同上
# 3. 运行 demo
python3 demo.py {RES文件夹路径} {测试图片路径}
我的操作:
sudo vim ~/.bashrc
跳转到文件末尾,加入下面两句,但是不能直接使用,因为EDGE_ROOT的路径是不一样的,需要跟改成自己的。在自己的cpp文件夹内,选中解压后的文件夹,查看属性可直接获取绝对路径。
EDGE_ROOT= SDK路径/cpp/解压后的文件夹名
export EDGE_ROOT="/home/meroke/Develop_Tool/EasyEdge/cpp/baidu_easyedge_linux_cpp"
export LD_LIBRARY_PATH="$EDGE_ROOT/lib:$LD_LIBRARY_PATH"
最终运行demo.py成功!
ok,我所遇到的问题就全部解决了,希望能对你们起到帮助。