3.2.2 旋量的基本概念
点、线、面是描述欧式几何空间的三个基本元素,而旋量(screw quantity)作为另外一个几何元素,由直线引申而来。根据Ball (1871) 的定义,“旋量是一条具有节距的直线”。简单而言,可以直观地将旋量视为一个机械螺旋。
旋量是含旋矩的线矢量,为几何量。也是李代数中通过原点的射线,是射影李代数 s e ( 3 ) se(3) se(3)中的元素。旋量集合构成五维射影空间。
速度旋量是附有速度幅值的旋量,用以描述刚体关于旋量轴线的运动,是李代数 s e ( 3 ) se(3) se(3)的元素,速度旋量可以表示为六维的李代数 s e ( 3 ) se(3) se(3)的伴随表示,与 R 6 R^6 R6同构。
力旋量是附有力幅值的旋量,是对偶李代数 s e ∗ ( 3 ) se^*(3) se∗(3)的元素。与速度旋量构成互易关系的力旋量常表示为 R 6 R^6 R6中向量空间 s e ∗ ( 3 ) se^*(3) se∗(3)的向量。
定义3.5 带有旋矩要素的线矢量即为旋量。线矢量
L
L
L和旋矩
h
h
h相结合即可得到旋量,旋量的六维向量形式为:
S
=
(
l
r
×
l
+
h
l
)
=
(
s
x
,
s
y
,
s
z
,
s
x
0
,
s
y
0
,
s
z
0
)
T
S=\begin{pmatrix} l \\ r\times l+hl \end{pmatrix}=(s_x,s_y,s_z,s_{x0},s_{y0},s_{z0})^T
S=(lr×l+hl)=(sx,sy,sz,sx0,sy0,sz0)T
其中,旋矩
h
h
h为副部在主部的投影;
l
l
l为线矢量
L
L
L的姿态向量;向量
r
r
r为姿态向量
l
l
l的位置向量,它也是旋量的轴线。
旋量运算
互易旋量由Klein与Ball在1871年分别提出。两旋量的互易积可由Klein型表示,为:
K
l
(
S
1
,
S
2
)
=
(
S
1
T
,
S
2
T
)
[
0
I
I
0
]
(
S
2
S
20
)
=
s
1
⋅
s
20
+
s
2
⋅
s
10
Kl(S_1,S_2)=(S_1^T,S_2^T)\begin{bmatrix}0&I\\I&0\end{bmatrix}\begin{pmatrix}S_2\\S_{20}\end{pmatrix}=s_1·s_{20}+s_2·s_{10}
Kl(S1,S2)=(S1T,S2T)[0II0](S2S20)=s1⋅s20+s2⋅s10
Note:互易积也称相互不变量,被Ball称之为虚系数。
Theory: 互易积独立于坐标系,具有不变性。
旋量叉积: 两旋量
S
1
,
S
2
S_1, S_2
S1,S2的叉积由旋量主部的叉积及其相应主、副部交叉的叉积得到的向量构成,表示为:
S
1
×
S
2
=
(
s
1
×
s
2
s
1
×
s
20
+
s
10
×
s
2
)
S_1\times S_2 =\begin{pmatrix}s_1\times s_2 \\s_1\times s_{20}+s_{10}\times s_2\end{pmatrix}
S1×S2=(s1×s2s1×s20+s10×s2)
Theory: 旋量叉积为零是两旋量共轴的充要条件。
旋量微分 直接上定义式,对时间
t
t
t求导即可。
d
S
d
t
=
(
d
s
d
t
d
s
0
d
t
+
d
s
0
d
t
×
s
)
\frac{dS}{dt}=\begin{pmatrix}\frac{ds}{dt} \\ \frac{ds_0}{dt}+\frac{ds_0}{dt}\times s\end{pmatrix}
dtdS=(dtdsdtds0+dtds0×s)
Killing型是李代数的内积,为不变量。
K
(
S
1
,
S
2
)
=
t
r
(
a
d
(
S
1
)
a
d
(
S
2
)
)
K(S_1,S_2)=tr(ad(S_1)ad(S_2))
K(S1,S2)=tr(ad(S1)ad(S2))
其中,
t
r
(
)
tr()
tr()为矩阵的迹,为矩阵的主对角线元素之和,
a
d
(
)
ad()
ad()为李代数元素的伴随表示。
Killing型和Klein型是李代数se(3)仅有的两种具有不变性的对称双线性型。