Deep Residual Learning for Image Recognition

1 前言

该论文主要解决的深层神经网络的训练问题。随着网络的深度的增加,模型的效果反而变差了,论文提出了Residual Learning的方式来训练深层的神经网络。

2 问题定义

基于深度神经网络模型在图像领域的很多任务上都取得了重大的突破,其中模型的深度起到了关键性的作用。但是随着模型深度的增加,一系列问题出现了:深度的模型只是堆叠更多的层就可以了吗?随着层数的增加,会出现梯度消失/爆炸问题,这个问题可以通过不同的归一化来解决。但还有一个问题:degradation — 模型退化。Degradation是论文解决的问题。那么什么是模型退化呢?
在这里插入图片描述

考虑一个已经训练好的模型,它能达到一定的效果,为了让效果更好,我们在训练好的模型的基础上增加层,再进行训练。按照常理,新增的层就算学习到了恒等映射模型也不会退化的,但是一些实验显示,增加层后的模型的效果不但没有提升反而还下降了!模型退化了!这表明:在求解时,使用多个非线性层来近似恒等映射可能是比较困难的

3 Residual Learning

在这里插入图片描述
为了解决模型退化的问题,作者提出了deep residual learning framework。
在加深模型时,我们通常希望新加的层能够直接学习到潜在的映射函数 H ( x ) \mathcal{H}(x) H(x),residual learning并不是如此,而是学习一个residual mapping F ( x ) = H ( x ) − x \mathcal{F}(x) = \mathcal{H}(x) - x F(x)=H(x)x。那么原来期望学习到的映射就可以表示成: H ( x ) = F ( x ) + x \mathcal{H}(x) = \mathcal{F}(x) + x H(x)=F(x)+x。这里有一个假设: F \mathcal{F} F H \mathcal{H} H更容易优化

F ( x ) + x \mathcal{F}(x) + x F(x)+x可以用一个带有shortcut连接的前馈神经网络模拟,如上图所示。如果恒等映射是最优解,那么只需要使residual block中层的参数为零即可。结合之前所说的非线性层难以学习identity,residual block不仅包含了identity部分,还包括了非线性部分,这样的一个映射不仅可以学习到复杂的非线性部分,还可以学习到非线性层难以学习到的线性部分(不仅是identity,还可以是 a x + b ax+b ax+b,线性函数加非线性函数)。

上图所示的残差块可以表示为:
y = F ( x , { W i } ) + x \mathbf{y}=\mathcal{F}\left(\mathbf{x},\left\{W_{i}\right\}\right)+ \mathbf{x} y=F(x,{Wi})+x

y = F ( x , { W i } ) + W s x \mathbf{y}=\mathcal{F}\left(\mathbf{x},\left\{W_{i}\right\}\right)+W_{s} \mathbf{x} y=F(x,{Wi})+Wsx
以两层的残差块为例, F ( x , W i ) = W 2 σ ( W 1 x ) \mathcal{F}(x, {W_i}) = W_2\sigma (W_1 x) F(x,Wi)=W2σ(W1x)表示需要学习的残差函数。当然,除了上图所示的残差块,还可以有三层甚至更多层的残差块。论文中还对shortcut connection的形式进行了实验验证,第二种形式的形式效果可能会稍微好一点点,但是可以忽略,而identity形式的残差具有更少的参数、更低的复杂度。

4. 方法总结

  • 研究深度模型中的退化问题,累积的非线性层可能难以学习到线性映射
  • 提出了residual learning,助力深度模型的学习,且没有增加学习的参数
  • 提出了ResNet
  • 累加的非线性层可能可以学习到较复杂的非线性变化,但是难以通过非线性层学习到线性变换,residual learning弥补了这一缺点


欢迎访问我的个人博客~~~
以及我的公众号【一起学AI】
在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
deep residual learning for image recognition是一种用于图像识别的深度残差学习方法。该方法通过引入残差块(residual block)来构建深度神经网络,以解决深度网络训练过程中的梯度消失和梯度爆炸等问题。 在传统的深度学习网络中,网络层数增加时,随之带来的问题是梯度消失和梯度爆炸。这意味着在网络中进行反向传播时,梯度会变得非常小或非常大,导致网络训练变得困难。deep residual learning则使用了残差连接(residual connection)来解决这一问题。 在残差块中,输入特征图被直接连接到输出特征图上,从而允许网络直接学习输入与输出之间的残差。这样一来,即使网络层数增加,也可以保持梯度相对稳定,加速网络训练的过程。另外,通过残差连接,网络也可以更好地捕获图像中的细节和不同尺度的特征。 使用deep residual learning方法进行图像识别时,我们可以通过在网络中堆叠多个残差块来增加网络的深度。这样,网络可以更好地提取图像中的特征,并在训练过程中学习到更复杂的表示。通过大规模图像数据训练,deep residual learning可以在很多图像识别任务中达到甚至超过人类表现的准确性。 总之,deep residual learning for image recognition是一种利用残差连接解决梯度消失和梯度爆炸问题的深度学习方法,通过增加网络深度并利用残差学习,在图像识别任务中获得了突破性的表现。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值