ResNet(Deep Residual Learning for Image Recognition)论文解读



Deep Residual Learning for Image Recognition
图像识别中的深度残差学习网络
作者:Kaiming He, Xiangyu Zhang ,Shaoqing Ren, Jian Sun
单位:MSRA
发表会议及时间:CVPR 2016


一 论文研究背景、成果及意义

这篇论文跟Highway Network提出的思想大差不差

首个成功训练成百上千层(100层及900层)的卷积神经网络
他的思路是借鉴了LSTM,引入门控单元,将传统前向传播增加一条计算路径变成如下图(3)的公式,增加了额外训练参数W_T
请添加图片描述
研究意义:

  • 简洁高效的ResNet受到工业界宠爱,自提出以来已经成为工业界最受欢迎的卷积神经网络结构
  • 近代卷积神经网络发展史的又一里程碑,突破千层网络,跳层连接成为标配

二 摘要核心

首先提出了深度卷积网络难训练
本文方法:残差学习框架可以让深层网络更容易训练
本文优点:ResNet易优化,并随着层数增加精度也提升
本文成果:ResNet比VGG深8倍,但是计算复杂度更低,在ILSVRC-2015获得3.57%的top-error
本文其他工作:CIFAR-10上训练1000层的ResNet
本文其他成果:在coco目标检测任务中提升28%的精度,并基于ResNet夺得ILSVRC的检测、定位,COCO的检测和分割四大任务的冠军

2.1 CIFAR-10上对比浅层网络和深层网络的精度

请添加图片描述
可以看出随着层数的增加,错误率不但没有下降,反而还更高了

2.2 残差学习模块

请添加图片描述

2.3 plain NetWork与ResNet的对比,ResNet完美解决plain存在的问题,即深层网络性能比浅层网络差

请添加图片描述

2.4 ResNet-18/34/50/101/152网络结构示意

请添加图片描述

三 论文重点解读

3.1 残差结构

Residual learning:让网络拟合H(x)-x,而非H(x)
注:整个building block仍旧拟合H(x),注意区分building block与网络层的差异,两者不一定等价
Plain:Block_out = H(x)
请添加图片描述
H(x) Residual learning:Block_out = H(x) = F(x)+ x
请添加图片描述
问:为什么拟合F(x)?
答:提供building block更容易学到恒等映射(identity mapping)的可能
问:为什么要恒等映射?
答:让深层网络不至于比浅层网络差
网络退化问题:
越深的网络拟合能力越强,因此越深的网络训练误差应该越低,但是实际相反
原因:并非过拟合,而是网络优化困难


可以看下面图例:
左图是18层网络,右图是34层网络,蓝色框可以认为是额外增加层
若蓝色框里的网络层能够学习到很等映射,34层网络至少能与18层网络有相同性能
请添加图片描述

3.2 Shortcht mapping

Identitiy与F(x)结合形式探讨:

  • A 全零填充:维度增加的部分采用0来填充
  • B 网络层映射:当维度发生变化时,通过网络层映射(例如1*1卷积)特征图至相同维度
  • C 所有Shortcut均通过网络层映射(1*1卷积)
    Shortcut mapping 有利于梯度传播
    请添加图片描述

3.3 ResNet结构

划分为6个stage
conv1 迅速降低分辨率 但是维度增加
4阶段残差堆叠
池化+Fc层输出
请添加图片描述
Basic:两个33卷积堆叠
Bottleneck:利用1
1卷积减少计算量
Bottleneck: 第一个11下降1/4通道数 第二个11提升4倍通道数

3.4 预热训练(训练亮点)

避免一开始较大的学习率导致模型的不稳定,因而一开始训练时用较小的学习率训练一个epochs,然后恢复正常学习率

四 实验结果分析

验证residual learning可解决网络退化问题,可训练更深网络请添加图片描述
横纵对比,shortcut策略(ABC)及层数 就是上一小节提出来ABC三种填充方式
请添加图片描述

五 论文总结

关键点&创新点 • 引入shortcut connection,让网络信息有效传播,梯度反传顺畅,使得数千层卷积神经网络都可以收敛 注:本文中:shortcut connection == skip connection == identity mapping
启发点 :

  1. 大部分的梯度消失与爆炸问题,可通过良好初始化或者中间层的标准化来解决。 An obstacle to answering this question was the notorious problem of vanishing/exploding gradients [1, 9], which hamper convergence from the beginning. This problem, however, has been largely addressed by normalized initialization [23, 9, 37, 13] and intermediate normalization layers (1 Introduction p2)
  2. shortcut connection有很多种方式,本文主要用的是恒等映射,即什么也不操作的往后传播 In our case, the shortcut connections simply perform identity mapping. (1 Introduction p6)
  3. highway network的shortcut connection依赖参数控制,resnet不需要 These gates are data-dependent and have parameters, in contrast to our identity shortcuts that are parameter-free.(2 Related Work p4)
  4. 恒等映射形式的shortcut connection是从网络退化问题中思考而来 This reformulation ( H(x ) = F(x) + x )is motivated by the counterintuitive phenomena about the degradation problem.(3.1 Residual learning)
  5. 借鉴VGG,本文模型设计原则:1.处理相同大小特征图,卷积核数量一样;2.特征图分辨率降低时,通道数翻倍 two simple design rules: (i) for the same output feature map size, the layers have the same number of filters; and (ii) if the feature map size is halved, the number of filters is doubled so as to preserve the time complexity per layer. (3.3 Network Architectures p2)
  6. 当特征图分辨率变化时,shortcut connection同样采用stride=2进行处理 For both options, when the shortcuts go across feature maps of two sizes, they are performed with a stride of 2. (3.3 Network Architectures p4)
  7. bottleneck 中两个1*1卷积分别用于减少通道数和增加/保存通道数 The three layers are 1×1, 3×3, and 1×1 convolutions, where the 1×1 layers are responsible for reducing and then increasing (restoring). (4.1 Imagenet Classification Deeper Bottleneck Architectures )
  8. 模型集成采用6种不同深度的ResNet结构,可以借鉴其思路
  9. cifar-10数据集上的ResNet-110, 第一个epochs采用较小学习率,来加速模型收敛
  10. cifar-10数据集上,ResNet-1202比110要差,原因可能是过拟合,而不是网络退化
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值