今天给大家讲最长锯齿子序列
思路
这个题目是我中学考试比赛题目 不知道为啥我没做对…
这个题目一看 就知道是一个线性dpdpdp。
首先 我们先定义状态设dp[i][1]dp[i][1]dp[i][1]表示以第iii个数结尾的最长锯齿子序列 初始值即dp[1][1]=1dp[1][1]=1dp[1][1]=1。
接着就是状态转移 我们知道 如果在第iii个数以前的某个数jjj 满足第iii个数加入这个以jjj结尾的最长锯齿子序列是合法的时候 dp[i][1]=max(dp[i][1],dp[j][1]+1)dp[i][1]=max(dp[i][1],dp[j][1]+1)dp[i][1]=max(dp[i][1],dp[j][1]+1)。
现在最重要的问题就是 如何判断第iii个数加入这个数列时 这个数列是否是合法的。
我们再开一维 设dp[i][2]dp[i][2]dp[i][2]表示以第iii个数字结尾的最长锯齿子序列中最后一个数减倒数第二个数的差是正还是负 如果是正,dp[i][2]=1dp[i][2]=1dp[i][2]=1;如果是负dp[i][2]=−1dp[i][2]=-1dp[i][2]=−1 则当第iii个数加入以第jjj个数结尾的最长锯齿子序列时 让a[i]−a[j]a[i]-a[j]a[i]−a[j]的值的正负与dp[j][2]dp[j][2]dp[j][2]的正负值相反 这个数列就是合法的。
记得注意一下 就是如果数列合法 且dp[j][1]>dp[i][1]dp[j][1]>dp[i][1]dp[j][1]>dp[i][1]时 我们先标记一下a[i]−a[j]a[i]-a[j]a[i]−a[j]的正负值 最后jjj这一层循环完之后 dp[i][2]dp[i][2]dp[i][2]就等于这个标记的正负。
代码
#include<cstdio>
#include<iostream>
using namespace std;
int dp[10001][3];
int a[10001];
int n;
int ans;
int main()
{
freopen("sawtooth.in","r",stdin);
freopen("sawtooth.out","w",stdout);
//文件输入输出
scanf("%d",&n);
for(int i=1;i<=n;++i)
scanf("%d",&a[i]);
//输入
dp[1][1]=1;
if(a[2]-a[1]>0)
dp[1][2]=0;
else
dp[1][2]=1;
//dp[1][1]和dp[1][2]的初始值
for(int i=2;i<=n;++i)
{
int bj=0;//标记
for(int j=1;j<i;++j)
{
if(dp[j][2]==0&&a[i]-a[j]>0&&dp[i][1]<dp[j][1]+1)
{
dp[i][1]=dp[j][1]+1;
bj=1;
}
if(dp[j][2]==1&&a[i]-a[j]<0&&dp[i][1]<dp[j][1]+1)
{
dp[i][1]=dp[j][1]+1;
bj=0;
}
//状态转移
}
dp[i][2]=bj;
}
for(int i=1;i<=n;++i)
{
//cout<<dp[i][1]<<" ";
ans=max(dp[i][1],ans);//记得遍历一遍 取最大值
}
//cout<<endl;
cout<<ans<<endl;//输出
}