推荐系统(四):Wide&Deep

点击率

点击率指系统推荐items时,用户的点击比率。通过这个数据来反映出推荐项目的准确率。

点击率预估与推荐算法有什么不同?

广告点击率预估是需要得到某个用户对某个广告的点击率,然后结合广告的出价用于排序;而推荐算法很多大多数情况下只需要得到一个最优的推荐次序,即TopN推荐的问题。当然也可以利用广告的点击率来排序,作为广告的推荐。

Wide & Deep模型的“记忆能力”与“泛化能力”

Memorization 和 Generalization是推荐系统很常见的两个概念,其中Memorization指的是通过用户与商品的交互信息矩阵学习规则,而Generalization则是泛化规则。我们前面介绍的FM算法就是很好的Generalization的例子,它可以根据交互信息学习到一个比较短的矩阵,矩阵中储存着每个用户特征的压缩表示。(embedding),而协同过滤与SVD都是靠记住用户之前与哪些物品发生了交互从而推断出的推荐结果,这两者推荐结果当然存在一些差异,我们的Wide&Deep模型就能够融合这两种推荐结果做出最终的推荐,得到一个比之前的推荐结果都好的模型。

可以这么说:Memorization趋向于更加保守,推荐用户之前有过行为的items。相比之下,generalization更加趋向于提高推荐系统的多样性(diversity)。Memorization只需要使用一个线性模型即可实现,而Generalization需要使用DNN实现。

下面是wide&deep模型的结构图,由左边的wide部分(一个简单的线性模型),右边的deep部分(一个典型的DNN模型)。
在这里插入图片描述
其实wide&deep模型本身的结构是非常简单的,对于有点机器学习基础和深度学习基础的人来说都非常的容易看懂,但是如何根据自己的场景去选择那些特征放在Wide部分,哪些特征放在Deep部分就需要理解这篇论文提出者当时对于设计该模型不同结构时的意图了,所以这也是用好这个模型的一个前提。

对于Wide和Deep来说,这两个算法一个希望通过Wide的方法来推荐较新的items,提高其多样性。Deep则提高预测的精准度通过结合着两个模型我们就可以得出全新的推荐效果。

代码实战

代码实战主要分为两大部分,第一部分是使用tensorflow中已经封装好的wide&deep模型,这一部分主要是熟悉模型训练的整体结构。第二部分是使用tensorflow中的keras实现wide&deep,这一部分主要是尽可能的看到模型内部的细节并将其实现。

Tensorflow内置的WideDeepModel

在Tensorflow的库中是已经内置了Wide-Deep model的,想要查看源代码了解具体实现过程可以看这里。下面参考Tensorflow官网的示例代码进行讲解。我们用到的数据集下载链接戳这里。

首先看全局实现:

tf.keras.experimental.WideDeepModel(
    linear_model, dnn_model, activation=None, **kwargs
)

这一步很容易看出来就是将linear_model与dnn_model拼接在了一起,对应于Wide-Deep FM中的最后一步。比如我们可以将linear_model与dnn_model做一个最简单的实现:

linear_model = LinearModel()
dnn_model = keras.Sequential([keras.layers.Dense(units=64),
                             keras.layers.Dense(units=1)])
combined_model = WideDeepModel(linear_model, dnn_model)
combined_model.compile(optimizer=['sgd', 'adam'], 'mse', ['mse'])
# define dnn_inputs and linear_inputs as separate numpy arrays or
# a single numpy array if dnn_inputs is same as linear_inputs.
combined_model.fit([linear_inputs, dnn_inputs], y, epochs)
# or define a single `tf.data.Dataset` that contains a single tensor or
# separate tensors for dnn_inputs and linear_inputs.
dataset = tf.data.Dataset.from_tensors(([linear_inputs, dnn_inputs], y))
combined_model.fit(dataset, epochs)

这里第一步就是直接调用一个keras.experimental中的linear_model,第二步简单实现了一个全连接神经网络,第三步使用WideDeepModel将前两步产生的两个model拼接在一起,形成最终的combined_model,接着就是常规的compile和fit了。

除此之外线性模型与DNN模型在联合训练之前均可进行分别训练:


linear_model = LinearModel()
linear_model.compile('adagrad', 'mse')
linear_model.fit(linear_inputs, y, epochs)
dnn_model = keras.Sequential([keras.layers.Dense(units=1)])
dnn_model.compile('rmsprop', 'mse')
dnn_model.fit(dnn_inputs, y, epochs)
combined_model = WideDeepModel(linear_model, dnn_model)
combined_model.compile(optimizer=['sgd', 'adam'], 'mse', ['mse'])
combined_model.fit([linear_inputs, dnn_inputs], y, epochs)

这里前三行代码训练了一个线性模型,中间三行代码训练了一个DNN模型,最后三行代码则将两个模型联合训练,以上就完成了对Tensorflow的WideDeepModel的调用,其中每个函数有一些其他参数我们这里不详细说明,读者若有需要可自行在tensorflow官网查询,另外该部分的源代码在Tensorflow的Github上有展示,链接在这。

Tensorflow实现wide&deep模型

这一部分对原始特征进行转换,以及deep特征和wide特征的选择,特征的交叉等一系列特征操作,模型也分成了wide部分和deep部分,相比于上述直接使用tensorflow内置的模型,更加的详细,可以对模型理解的更加的深刻。

在这里wide和deep部分的优化,为了简单实现,使用了同一个优化器优化两部分,详细内容参考代码中的注释。

代码参考源代码文档。

深度学习推荐系统的发展

在介绍部分就说过,Wide&Deep模型在深度学习发展中起到了非常重要的作用,从下图中我们就可以看到它对后续模型发展的一个影响。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值