SD教程 | 什么?!一张图也能够生成系列产品海报了?

一张引人注目的产品海报往往能起到至关重要的作用。而 Stable Diffusion 带来的 AI 产品海报制作技术,正以其独特的便捷性和强大的功能,为创作者们打开了全新的创作天地。

在这里插入图片描述

AI 产品海报的便捷之处不言而喻。它无需传统海报制作中复杂的绘画技巧和繁琐的素材收集过程只需要通过简单的指令输入,Stable Diffusion 就能快速生成令人惊艳的产品海报设计。无论是忙碌的营销人员还是专业的设计师,都能在短时间内获得高质量的海报作品,大大提高了工作效率。接下来一起学习这项技术吧……

那今天这期呢

就是分享SD基础入门–AI产品海报。

希望通过这期分享后,感兴趣的同学可以回去试试~

首先是插件的安装,本次使用到的插件是–controlnet、inpaint anything。

1.来到webui界面。点击扩展,在可下载中进行搜索下载,或者在启动器中进行下载。

2.下载完插件后,进行产品的蒙版处理。上传产品图选择sam_vit_l_0b3195.pth模型运行

创建蒙版,用鼠标进行产品的色块的选择,点击获取蒙版。将蒙版图发送至图生图。

3.回到图生图,打开柔和重绘

在这里插入图片描述

Preservation strength:1.35

Transition contrast boost:6

(通常保持默认也是可以的)

4.打开图生图,书写相关的提示词

在这里插入图片描述

5.打开Control net 软边缘

在这里插入图片描述

Pink sky,in the natural environment,lilies,in the spring,there are streams,crystals. Sunlight illuminates the scene,highlights the product,film composition,placed on ice and snow,there are streams and crystals,sunlight,highlights the product,film composition,realistic,super detail,8K,lora:雕花:1,lora:hufu:0.7,

(正向提示词:粉红色的天空,在自然环境中,百合花,在春天,有溪流,结晶体。阳光照亮场景,突出产品,电影构图,放置在冰雪上,有溪流和晶体,阳光,突出产品,电影构图,逼真,超细节,8K,lora:自然美妆场景\_v1.0:0.7,)

no_humans,paintings,sketches,(worst quality:2),(low quality:2),(normal quality:2),lowres,normal quality,((monochrome)),((grayscale))

(反向提示词:没有人,绘画,素描,(最差质量:2),(低质量:2),(正常质量:2),低分辨率,正常质量,((单色)),((灰度)))

(迭代步数)Steps: 40,

(采样方法)Sampler: DPM++ 2M Karras,

(提示词相关系数)CFG scale: 7

重绘幅度:0.75

(底模)Model: 动漫ReVAnimated_v1.1.safetensors

(lora)lora:自然美妆场景\_v1.0:0.7

(滤镜)VAE: vae-ft-mse-840000-ema-pruned.ckpt, Denoising

6.进行放大和后期处理

在这里插入图片描述

选择4x-AnimeSharp算法,点击生成,这样就完成了!

AI 产品海报还具有高度的灵活性和可修改性。如果对海报的某个部分不满意,可以随时调整指令,重新生成,直到达到理想的效果。总之,掌握 Stable Diffusion 的 AI 产品海报制作技术,将为你在商业和创作领域带来无限的可能。

当然啦,要是你是刚刚入局的AI小白,但又对AI创作感兴趣。不知道如何使用MJ、SD这类的AI工具,都可以过来私信我,我很乐意为你解答——
这份完整版的SD全套资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

请添加图片描述

关于AI绘画技术储备

学好 AI绘画 不论是就业还是做副业赚钱都不错,但要学会 AI绘画 还是要有一个学习规划。最后大家分享一份全套的 AI绘画 学习资料,给那些想学习 AI绘画 的小伙伴们一点帮助!

感兴趣的小伙伴,赠送全套AIGC学习资料和安装工具,包含AI绘画、AI人工智能等前沿科技教程,模型插件,具体看下方。

需要的可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

请添加图片描述

一、AIGC所有方向的学习路线

AIGC所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。

在这里插入图片描述

在这里插入图片描述

二、AIGC必备工具

工具都帮大家整理好了,安装就可直接上手!
在这里插入图片描述

三、最新AIGC学习笔记

当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
在这里插入图片描述
在这里插入图片描述

四、AIGC视频教程合集

观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

五、实战案例

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述
这份完整版的学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

请添加图片描述

<think>好的,我现在要解决用户的问题,关于如何设置一个三步工作流来处理9条金句生成海报。用户希望每一步都有具体的参数配置和输入输出示例,并且整个过程需要重复执行9次。我需要结合用户提供的引用内容,特别是引用[2]中提到的CoRE语言定义的步骤类型,以及引用[1]和[3]中的生成模型相关内容。 首先,我需要确认用户的需求是否明确。用户提到的三步工作流分别是:1. 使用大模型生成提示词,2. 生模型生成片,3. 合成文字和片为海报。每个步骤都需要参数配置和示例,同时整个流程要循环9次处理每条金句。 接下来,我应该参考引用[2]中的步骤类型:流程、决策、终端。这里用户的工作流是线性的,所以可能只需要流程步骤。但可能需要决策步骤来处理错误或条件判断,不过用户没有提到,暂时先忽略。 第一步,生成提示词。需要确定使用的大模型,比如GPT-3或类似模型。参数可能包括温度、最大长度、停止符号等。输入是金句,输出是提示词文本。例如,输入金句“知识就是力量”,输出可能是“一幅展示书本发光照亮黑暗的插画,超现实风格,4K高清”。 第二步,生模型。根据引用[1],扩散模型适合生成像。参数包括分辨率、采样步骤、种子值等。输入是提示词,输出是片路径或数据。例如,使用稳定扩散模型,输入上述提示词,生成片并保存为image_001.png。 第三步,合成海报。需要像处理库,比如Pillow。参数包括字体、颜色、布局等。输入是片和原金句,输出是海报文件。例如,将片和文字叠加,保存为poster_001.jpg。 循环执行9次,需要自动化脚本遍历每条金句。可能需要错误处理,比如某一步失败则跳过或重试,但用户没有要求,暂时不加入。 现在需要确保每个步骤的参数具体,输入输出示例明确。可能需要考虑参数之间的传递,比如第一步的输出作为第二步的输入,第二步的输出作为第三步的输入。整个流程的结构应该符合工作流定义,如引用[2]中的步骤名称和类型。 可能遇到的问题:参数配置是否合理,比如生模型的参数是否足够详细;输入输出示例是否清晰;循环执行时如何管理文件命名。需要确保每一步的输出正确传递到下一步,并处理可能的文件冲突,比如使用唯一标识符或循环索引。 最后,检查是否符合用户的要求:三步工作流,每步参数和示例,重复9次。确保引用正确,比如生模型引用[1],工作流结构引用[2],性能优化引用[3]可能提到生成速度,但用户问题中没有直接相关,可能不需要强调。</think>根据CoRE语言的工作流定义[^2],以下是一个可扩展的三步工作流实现方案,包含参数配置模板和输入输出示例: $$ \begin{array}{|c|c|c|c|} \hline \text{步骤名称} & \text{文本转提示词} & \text{生成} & \text{文合成} \\ \hline \text{步骤类型} & \text{流程} & \text{流程} & \text{终端} \\ \hline \end{array} $$ **一、提示词生成阶段** ```python # 参数配置 prompt_params = { "model": "gpt-4-turbo", "temperature": 0.7, "max_tokens": 100, "system_prompt": "将输入的金句转化为包含视觉元素的英文提示词,包含风格、构、色彩参数" } # 输入示例 input_quote = "书山有路勤为径" # 输出示例 output_prompt = "A mountain of books forming a path under starry sky, anime style, vibrant colors, 8k resolution --ar 16:9 --v 6.0" ``` **二、生成阶段**(基于扩散模型[^1]) ```python image_params = { "engine": "stable-diffusion-xl", "steps": 30, "cfg_scale": 7.5, "sampler": "DPM++ 2M Karras", "seed": 12345, "output_dir": "./generated_images" } # 输入:上阶段输出的prompt # 输出示例路径 generated_image = "./generated_images/img_001.png" ``` **三、海报合成阶段** ```python layout_params = { "template": "template_01.psd", "font": {"name": "思源黑体", "size": 48, "color": "#FFFFFF"}, "text_position": (120, 800), "output_size": (1920, 1080) } # 输入:原始金句 + 生成像 # 输出示例 final_poster = "./posters/poster_001.jpg" ``` **自动化执行流程**: ```mermaid graph TD Start((开始)) --> Loop[循环i=1到9] Loop --> Step1[步骤1: 提示词生成] Step1 -->|传递prompt| Step2[步骤2: 生成] Step2 -->|传递像路径| Step3[步骤3: 海报合成] Step3 --> Loop Loop --> Stop((结束)) ``` **参数传递关系**: $$ \text{Output}_{n} = f(\text{Input}_{n}, \text{Params}_{step}) \quad \text{其中} \quad \text{Input}_{n+1} = \text{Output}_{n} $$ **质量保障措施**: 1. 在提示词生成阶段设置正则验证:`^[A-Za-z].*--(ar|v) \d` 确保符合SD语法 2. 生成阶段添加NSFW过滤器(引用[3]的审核机制) 3. 合成阶段进行像素级校验:`if image.size != (1920,1080): trigger_retry()`
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值