一、简介
使用TensorFlow和OpenCV实现图像分类。
按照流程图运行程序,可以非常简便地完成图像预处理、生成数据集、训练模型和部署模型。
四个程序的功能如下:
preprocess.py : 对图像进行重命名和调整大小,建议拍摄形状为正方形,调整后的图像尺寸为640*640
train.py : 生成数据集和训练模型
test_model.py : 检查新生成模型的表现(性能)
deploy.py : 使用摄像头运行模型,对物体进行实时分类
二、准备工作
1、安装Visual Studio Community 2022
安装软件,并勾选安装“使用C/C++桌面开发”选项。
2、安装Anaconda
安装完成后,运行Anaconda Prompt,依次运行以下代码。
conda create -n tensorflow python>3.8
activate tensorflow
pip install tensorflow>2.8
pip install labelImg
pip install opencv-python
pip install pillow
三、使用方法
1、把拍摄好的图片放到voc_dataset文件夹中,子文件夹按照“类标签”进行存放。
2、运行preprocess.py程序,重命名图片、调整图片尺寸。
4、运行train.py程序,生成一个新的模型。
5、运行test_model.py程序,测试模型的准确率。
6、运行deploy.py程序,可以在计算机或嵌入式设备中运行,执行实时物体分类。
四、流程图
五、文件【百度网盘分享】
见本人博客文章末尾,使用TensorFlow生成自定义模型 – 科创研学社