2023APMCM(B题)亚太地区数学建模竞赛| 建模秘籍&文章代码思路大全

铛铛!小秘籍来咯!

小秘籍希望大家都能轻松建模呀,数维杯也会持续给大家放送思路滴~

抓紧小秘籍,我们出发吧~

来看看 APMCM(B题)!
在这里插入图片描述

完整版内容在文末领取噢~

问题重述

考虑的温室设计为密封的玻璃温室,其尺寸为10m×3m×2m。温室风扇尺寸为0.5m×0.5m,位于温室的左侧。温室风扇的位置和暖空气出口的速度对温室内的速度场和温度场的分布和均匀性产生影响。问题的目标是通过优化温室风扇,获得适宜的风速和温度分布,以提高温室内的均匀性。

问题分为四个部分:

问题1:
建立没有作物的玻璃温室内的温度和风速分布的数学模型。在温室高度为0.5米的横截面上显示风速和温度的分布。

问题2:
建立种植了作物的玻璃温室内的温度和风速分布的数学模型。在温室内的两个横截面上呈现风速和温度的分布:一个在高度为0.5米的位置(作物冠层水平)和另一个在高度为0.1米的位置(作物冠层内部)。分析条件是否适宜作物生长。

问题3:
为以下两种情景提供玻璃温室内的温度和风速分布,并将其与第二个问题中的解决方案进行比较。在第一种情景中,将暖空气出口的速度从2 m/s增加到3 m/s。在第二种情景中,通过将温室风扇从1.3m降至1m的位置进行调整。

问题4:
团队是否能够进一步优化玻璃温室的温室风扇设计,包括温室风扇的数量、位置、风速、吹出温度、规格和不同作物等因素。
当考虑玻璃温室中的气候调控时,我们可以采用基于质量守恒和热守恒的模型。这里我们考虑二维稳态情况。问题的基本思路如下:

问题一

问题1:没有作物的玻璃温室内的温度和风速分布建模

  1. 流体动力学模型: 使用质量守恒和Navier-Stokes方程来描述流场。考虑在玻璃温室中的流体运动,其中质量守恒方程可以写为:

∇ ⋅ u = 0 \nabla \cdot \mathbf{u} = 0 u=0

其中, u = ( u , v ) \mathbf{u} = (u, v) u=(u,v)是速度场。Navier-Stokes方程可用于描述速度场的变化:

ρ ( ∂ u ∂ t + u ⋅ ∇ u ) = − ∇ p + μ ∇ 2 u \rho \left(\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u}\right) = -\nabla p + \mu \nabla^2 \mathbf{u} ρ(tu+uu)=p+μ2u

这里, ρ \rho ρ 是空气密度, p p p是压力, μ \mu μ 是动力粘度。边界条件可根据温室结构设置,例如,温室底部和外侧玻璃可以设置为固定速度或无滑移条件。

  1. 热传导模型: 利用热守恒方程描述温度场的演变:

    ρ c p u ⋅ ∇ T = k ∇ 2 T \rho c_p \mathbf{u} \cdot \nabla T = k \nabla^2 T ρcpuT=k2T

    其中, T T T是温度, ρ \rho ρ是空气密度, c p c_p cp 是空气比热容, k k k是热传导系数。温室边界条件可根据外部条件和温室结构设置,例如,温室外玻璃和底部土壤可以设置为定温度条件。

  2. 数值求解: 使用数值方法,如有限元法,对上述方程进行离散化和求解。这可以通过Python中的FEniCS或其他数值求解软件来实现。通过数值模拟,可以得到温室内的温度和风速分布。
    请添加图片描述

from fenics import *
import matplotlib.pyplot as plt

# 定义网格和功能空间
nx, ny = 100, 50
mesh = RectangleMesh(Point(0, 0), Point(10, 5), nx, ny)
V = VectorFunctionSpace(mesh, 'P', 2)
Q = FunctionSpace(mesh, 'P', 1)

# 定义问题参数
rho = Constant(1.0)  # 空气密度
mu = Constant(0.01)  # 动力粘度
cp = Constant(1000.0)  # 空气比热容
k = Constant(0.01)  # 热传导系数

# 定义边界条件
bc = [DirichletBC(V, Constant((0, 0)), 'near(x[1], 0)'),
      DirichletBC(V, Constant((0, 0)), 'near(x[1], 5)'),
      DirichletBC(V, Constant((2, 0)), 'near(x[0], 0)')]

# 定义变量
u = TrialFunction(V)
v = TestFunction(V)
p = TrialFunction(Q)
q = TestFunction(Q)

# 定义方程
F1 = rho*dot(u, v)*dx + rho*dot(dot(u, nabla_grad(u)), v)*dx + mu*inner(grad(u), grad(v))*dx - div(v)*p*dx + q*div(u)*dx

# 求解方程

问题二

问题2的思路:建立种植了作物的玻璃温室内的温度和风速分布数学模型

  1. 流体动力学模型: 在考虑了作物的影响后,我们需要修改流体动力学模型。依然使用质量守恒和Navier-Stokes方程,但现在考虑作物的影响。作物模型可以简化为多孔介质模型,通过引入一个额外的阻力项来模拟作物的存在。流体动力学模型可以用以下方程表示:

    ∇ ⋅ u = 0 \nabla \cdot \mathbf{u} = 0 u=0

    ρ ( ∂ u ∂ t + u ⋅ ∇ u ) = − ∇ p + μ ∇ 2 u − ∇ ⋅ ( ϵ u ) \rho \left(\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u}\right) = -\nabla p + \mu \nabla^2 \mathbf{u} - \nabla \cdot \left(\epsilon \mathbf{u}\right) ρ(tu+uu)=p+μ2u(ϵu)

    其中, ϵ \epsilon ϵ是作物引起的阻力项。边界条件和初始条件需要根据具体情况进行调整,以考虑作物的位置和影响。

  2. 热传导模型: 作物的存在还会对温度场产生影响。引入作物对温度场的阻力,热传导模型可以表示为:

    ρ c p u ⋅ ∇ T = k ∇ 2 T − ϵ ′ T \rho c_p \mathbf{u} \cdot \nabla T = k \nabla^2 T - \epsilon' T ρcpuT=k2TϵT

    其中, ϵ ′ \epsilon' ϵ是作物对温度场的阻力项。

  3. 数值求解: 利用数值方法,如有限元法,对上述方程进行离散化和求解。这可以通过Python中的FEniCS或其他数值求解软件来实现。通过数值模拟,可以得到温室内的温度和风速分布。

import cv2
import matplotlib.pyplot as plt
import numpy as np
import os
from sklearn.model_selection import train_test_split

# 假设你已经有了一个加载数据的函数 load_data(),返回图像数据和相应的关键点标注

def openpose_model():
    # 在这里选择和配置OpenPose模型
    # ...

def train_openpose(train_images, train_keypoints):
    model = openpose_model()
    # 在这里进行模型训练
    # ...
    return model

def estimate_apple_positions(model, test_images):
    all_keypoints = []

    for i, image in enumerate(test_images):
        # 预测关键点位置
        keypoints = model.predict(np.expand_dims(image, axis=0))

        # 绘制带有关键点的图像
        plt.imshow(image)
        plt.scatter(keypoints[:, 0], keypoints[:, 1], c='red', marker='o')
        plt.title('Estimated Apple Positions')
        plt.show()

        all_keypoints.append(keypoints)

    # 绘制苹果关键点的二维坐标散点图
    all_keypoints = np.concatenate(all_keypoints, axis=0)
    plt.scatter(all_keypoints[:, 0], all_keypoints[:, 1], c='blue', marker='o')
    plt.title('All Apple Positions')
    plt.xlabel('X Coordinate')

问题三

情景1:将暖空气出口的速度从2 m/s增加到3 m/s

  1. 流体动力学模型:

    • 质量守恒方程: 保持不变,表达温室内空气质量的守恒。
      ∇ ⋅ u = 0 \nabla \cdot \mathbf{u} = 0 u=0
    • Navier-Stokes方程: 速度场的变化需要调整动量守恒方程,考虑到新的暖空气速度出口条件。
      ρ ( ∂ u ∂ t + u ⋅ ∇ u ) = − ∇ p + μ ∇ 2 u \rho \left(\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u}\right) = -\nabla p + \mu \nabla^2 \mathbf{u} ρ(tu+uu)=p+μ2u
  2. 热传导模型:

    • 热守恒方程: 仍然描述温度场的演变,与问题2相同。
      ρ c p u ⋅ ∇ T = k ∇ 2 T \rho c_p \mathbf{u} \cdot \nabla T = k \nabla^2 T ρcpuT=k2T
  3. 边界条件和初始条件:

    • 调整温室出口的速度条件,确保符合情景变化。
  4. 数值求解:

    • 使用数值方法对更新后的流体动力学和热传导方程进行求解。
    • 可通过对比结果与问题2基准情况来评估速度调整对温室内气候的影响。

情景2:通过将温室风扇从1.3m降至1m的位置进行调整

  1. 流体动力学模型:

    • 质量守恒方程: 仍然保持不变。
      ∇ ⋅ u = 0 \nabla \cdot \mathbf{u} = 0 u=0
    • Navier-Stokes方程: 调整风扇位置可能会对速度场产生更直接的影响,需要调整动量守恒方程。
      ρ ( ∂ u ∂ t + u ⋅ ∇ u ) = − ∇ p + μ ∇ 2 u \rho \left(\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u}\right) = -\nabla p + \mu \nabla^2 \mathbf{u} ρ(tu+uu)=p+μ2u
  2. 热传导模型:

    • 热守恒方程: 保持不变,描述温度场的演变。
      ρ c p u ⋅ ∇ T = k ∇ 2 T \rho c_p \mathbf{u} \cdot \nabla T = k \nabla^2 T ρcpuT=k2T
  3. 边界条件和初始条件:

    • 调整温室风扇位置的边界条件,确保符合情景变化。
  4. 数值求解:

    • 使用数值方法对更新后的流体动力学和热传导方程进行求解。
    • 对比结果与问题2基准情况,评估风扇位置调整对温室内气候的影响。
      请添加图片描述

评估:

  • 对比情景1和情景2的数值模拟结果,了解不同参数调整对温室气候的影响。
  • 分析温室内的温度和风速分布,评估是否达到了优化的气候条件。
  • 在两种情景下,与问题2的基准情况进行比较,以确定调整的效果。
from fenics import *
import matplotlib.pyplot as plt

# 定义网格和功能空间
nx, ny = 100, 50
mesh = RectangleMesh(Point(0, 0), Point(10, 5), nx, ny)
V = VectorFunctionSpace(mesh, 'P', 2)
Q = FunctionSpace(mesh, 'P', 1)

# 定义问题参数
rho = Constant(1.0)  # 空气密度
mu = Constant(0.01)  # 动力粘度
cp = Constant(1000.0)  # 空气比热容
k = Constant(0.01)  # 热传导系数
epsilon = Constant(0.1)  # 多孔介质阻力项

# 定义边界条件
bc_scenario1 = [DirichletBC(V, Constant((0, 0)), 'near(x[1], 0)'),
                DirichletBC(V, Constant((0, 0)), 'near(x[1], 5)'),
                DirichletBC(V, Constant((3, 0)), 'near(x[0], 0)')]

bc_scenario2 = [DirichletBC(V, Constant((0, 0)), 'near(x[1], 0)'),
                DirichletBC(V, Constant((0, 0)), 'near(x[1], 5)'),
                DirichletBC(V, Constant((2, 0)), 'near(x[0], 0)')]

# 定义变量
u = TrialFunction(V)
v = TestFunction(V)
p = TrialFunction(Q)
q = TestFunction(Q)

# 定义作物阻力项
epsilon_expr = Expression('epsilon', degree=1, epsilon=epsilon)
epsilon_u = dot(epsilon_expr * u, v) * dx
epsilon_T = epsilon_expr * dot(u, grad(T)) * q * dx

# 定义方程
F1 = rho*dot(u, v)*dx + rho*dot(dot(u, nabla_grad(u)), v)*dx + mu*inner(grad(u), grad(v))*dx - div(v)*p*dx + q*div(u)*dx - epsilon_u
F2 = cp*rho*dot(u, grad(T))*q*dx + k*dot(grad(T), grad(q))*dx - epsilon_T

# 求解方程 - 情景1
u_problem_scenario1 = LinearVariationalProblem(lhs(F1), rhs(F1), u, bcs=bc_scenario1)
T_problem_scenario1 = LinearVariationalProblem(lhs(F2), rhs(F2), T, bcs=bc_scenario1)
u_solver_scenario1 = LinearVariationalSolver(u_problem_scenario1)
T_solver_scenario1 = LinearVariationalSolver(T_problem_scenario1)

# 求解方程 - 情景2
u_problem_scenario2 = LinearVariationalProblem(lhs(F1), rhs(F1), u, bcs=bc_scenario2)
T_problem_scenario2 = LinearVariationalProblem(lhs(F2), rhs(F2), T, bcs=bc_scenario2)
u_solver_scenario2 = LinearVariationalSolver(u_problem_scenario2)
T_solver_scenario2 = LinearVariationalSolver(T_problem_scenario2)

# 求解速度场和温度场 - 情景1
u_solver_scenario1.solve()
T_solver_scenario1.solve()

# 求解速度场和温度场 - 情景2
u_solver_scenario2.solve()
T_solver_scenario2.solve()

# 可视化结果
plot(u, title="Velocity - Scenario 1")
plt.show()
plot(T, title="Temperature - Scenario 1")
plt.show()

plot(u, title="Velocity - Scenario 2")

问题四

问题4的思路:温室风扇设计的进一步优化

问题4涉及对温室风扇设计的进一步优化,包括温室风扇的数量、位置、风速、吹出温度、规格和不同作物等因素。以下是思路的详细展开:

  1. 温室风扇数量和位置的优化:

    • 思路: 通过数值模拟或实验,优化温室内风扇的数量和位置,以实现更均匀的温度和风速分布。可以考虑使用多个风扇,调整它们的相对位置,以提高整个温室内的气候均匀性。
    • 实现: 考虑使用优化算法,如遗传算法或粒子群算法,以找到最佳的风扇数量和位置组合。通过调整问题1中的模型,引入新的参数表示风扇的位置和数量。
  2. 温室风扇风速和吹出温度的优化:

    • 思路: 调整温室风扇的风速和吹出温度,以满足作物的生长需求。不同作物可能对风速和温度有不同的适应性,因此需要根据具体作物进行优化。
    • 实现: 引入新的参数表示风扇的风速和吹出温度,通过数值模拟或实验,找到最佳的参数组合。修改问题1中的模型,使其考虑新的风扇参数。
  3. 不同作物的适应性考虑:

    • 思路: 考虑不同作物对温度和风速的适应性差异,优化温室设计以满足不同作物的生长需求。一些作物可能对较高的风速更敏感,而另一些作物可能对温度的变化更敏感。
    • 实现: 将问题2中的模型参数化,引入表示不同作物适应性的参数。通过模拟或实验,找到最佳的温室设计,以适应多种作物的生长。
  4. 规格优化:

    • 思路: 优化温室风扇的规格,包括尺寸和性能参数,以提高能效和降低能耗。考虑使用更先进的风扇技术,如可调速风扇或具有智能控制功能的风扇。
    • 实现: 引入新的参数表示风扇的规格,通过数值模拟或实验,找到最佳的规格组合。考虑能效和成本等因素,以综合考虑温室系统的性能。
  5. 整体优化:

    • 思路: 将温室内的所有设计参数综合考虑,通过综合优化算法找到最佳的温室设计,以满足不同作物的生长需求,提高生产效益和资源利用效率。
    • 实现: 将问题1中的模型参数化,并引入所有设计参数,使用综合优化算法,如多目标优化算法,找到最佳设计方案。考虑温室系统的整体性能和可行性。

这些优化思路需要综合考虑温室系统的多个因素,包括气候要素、作物需求、能效和成本等。通过数值模拟、实验和优化算法的结合,可以找到最佳的温室设计,提高温室生产效益和可持续性。

  1. 模型参数化和灵活性:

    • 思路: 设计一个参数化的模型,使得温室设计变得灵活,能够适应不同地理环境、季节变化和不同作物的需求。通过灵活的模型,可以更容易地进行优化和适应性调整。
    • 实现: 将问题1中的模型设计得更具通用性,引入可调整的参数,以适应不同条件下的温室设计需求。通过对这些参数进行优化,可以实现对不同情境的适应性。
  2. 耦合模型:

    • 思路: 将流体动力学和热传导模型与植物生长模型进行耦合,考虑植物对气候的影响。这样可以更全面地评估温室设计对作物生长的影响,实现更精准的优化。
    • 实现: 引入植物生长模型,该模型可以根据温室内的气候条件模拟作物的生长。通过联合求解流体动力学、热传导和植物生长方程,可以得到更全面的温室系统设计。
  3. 实时监测和智能控制:

    • 思路: 结合实时监测技术和智能控制系统,实现对温室气候的实时调整和优化。通过感知实际环境参数,智能系统可以根据实时数据进行自适应控制,提高系统的动态性能。
    • 实现: 引入实时监测设备,如温度传感器、湿度传感器和风速传感器。通过将这些数据反馈到控制系统中,实现对温室风扇、通风系统等的智能控制,以实现动态的气候优化。
  4. 多目标优化:

    • 思路: 将问题转化为多目标优化问题,考虑不同目标之间的权衡。可以同时优化产量、能耗、成本等多个目标,以实现全面的性能提升。
    • 实现: 使用多目标优化算法,如多目标遗传算法或多目标粒子群算法,将不同目标进行权衡。通过定义合适的目标函数,找到平衡多个目标的最佳设计方案。

这些思路可以相互结合,形成一个综合的优化框架,以实现对温室系统的全面性能提升。通过不断调整和优化,可以使温室设计更加智能、灵活和高效。

from scipy.optimize import minimize

# 定义目标函数
def objective(x):
    # x 是参数向量,可以包含温室风扇数量、位置、风速、吹出温度等参数
    # 这里假设有两个目标函数:最小化能耗和最大化产量
    energy_consumption = x[0]  # 模拟的能耗函数,实际问题需要更详细的建模
    crop_yield = -x[1]  # 模拟的产量函数,实际问题需要更详细的建模

    # 返回负值表示最大化目标
    return energy_consumption + crop_yield

# 定义约束条件
def constraint1(x):
    # 模拟的约束条件1:温室风速需要在合理范围内
    return x[2] - 1.5  # 假设最小风速为1.5 m/s

def constraint2(x):
    # 模拟的约束条件2:温室吹出温度需要在合理范围内
    return 30 - x[3]  # 假设最大吹出温度为30°C

# 初始猜测值
x0 = [1, 2, 2, 25]  # 示例中的参数向量,需要根据实际问题进行设置

# 设置优化问题
constraints = [{'type': 'ineq', 'fun': constraint1}, {'type': 'ineq', 'fun': constraint2}]

# 定义目标函数和约束条件的梯度,如果可用的话(可选)
def gradient_objective(x):
    # 返回目标函数的梯度
    # 在实际问题中,可能需要通过数值方法或解析方法计算梯度
    return [1, -1, 0, 0]

def gradient_constraint1(x):
    # 返回约束条件1的梯度
    # 在实际问题中,可能需要通过数值方法或解析方法计算梯度
    return [0, 0, 1, 0]

def gradient_constraint2(x):
    # 返回约束条件2的梯度
    # 在实际问题中,可能需要通过数值方法或解析方法计算梯度
    return [0, 0, 0, -1]

更多内容点击下方名片领取完整内容!
一起来关注数学建模小秘籍冲刺亚太赛区最强王者!

  • 6
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

数学建模小secret

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值