定积分习题(一)

习题(一)承自定积分框架。

1. 计算
∫ 0 1 x ln ⁡ x d x \int_0^1 x\ln x dx 01xlnxdx

注意到 lim ⁡ x → 0 x ln ⁡ x = 0 \displaystyle \lim_{x\to 0} x\ln x=0 x0limxlnx=0,可拓展 x ln ⁡ x x\ln x xlnx 0 0 0 处的定义,则 x ln ⁡ x x\ln x xlnx [ 0 , 1 ] [0,1] [0,1] 上可积。

根据 3.7
∫ 0 1 x ln ⁡ x d x = lim ⁡ δ → 0 + ∫ δ 1 x ln ⁡ x d x \int_0^1 x\ln x dx=\lim_{\delta\to 0^+}\int_{\delta}^1x\ln xdx 01xlnxdx=δ0+limδ1xlnxdx
因为 ln ⁡ x \ln x lnx [ δ , 1 ] [\delta,1] [δ,1] 上有定义且可导,使用分部积分计算等式右边的式子
lim ⁡ δ → 0 + ∫ δ 1 x ln ⁡ x d x = lim ⁡ δ → 0 + ( 1 2 x 2 ln ⁡ x ∣ δ 1 − 1 2 ∫ δ 1 x 2 ⋅ 1 x d x ) = lim ⁡ δ → 0 + ( 1 2 x 2 ln ⁡ x ∣ δ 1 − 1 4 x 2 ∣ δ 1 ) = − 1 4 \begin{aligned} \lim_{\delta\to 0^+}\int_{\delta}^1x\ln xdx&=\lim_{\delta\to0^+}\left(\left.\frac{1}{2}x^2\ln x\right|^1_\delta-\frac{1}{2}\int_\delta^1x^2\cdot \frac{1}{x}dx\right)\\ &=\lim_{\delta\to0^+}\left(\left.\frac{1}{2}x^2\ln x\right|^1_\delta-\left.\frac{1}{4}x^2\right|^1_\delta\right)\\ &=-\frac{1}{4} \end{aligned} δ0+limδ1xlnxdx=δ0+lim(21x2lnxδ121δ1x2x1dx)=δ0+lim(21x2lnxδ141x2δ1)=41
为了方便可以省略取极限的步骤,简写成
∫ 0 1 x ln ⁡ x d x = 1 2 x 2 ln ⁡ x ∣ 0 1 − 1 2 ∫ 0 1 x 2 ⋅ 1 x d x = 1 2 x 2 ln ⁡ x ∣ 0 1 − 1 4 x 2 ∣ 0 1 = − 1 4 \begin{aligned} \int_0^1x\ln xdx&=\left.\frac{1}{2}x^2\ln x\right|^1_0-\frac{1}{2}\int_0^1x^2\cdot \frac{1}{x}dx\\ &=\left.\frac{1}{2}x^2\ln x\right|^1_0-\left.\frac{1}{4}x^2\right|^1_0\\ &=-\frac{1}{4} \end{aligned} 01xlnxdx=21x2lnx012101x2x1dx=21x2lnx0141x201=41
但应该了解能简写的原因。

2. f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b] 上可积,求证存在的连续函数序列 { φ n ( x ) } \{\varphi_n(x)\} {φn(x)},使得
lim ⁡ n → ∞ ∫ a b ∣ f ( x ) − φ n ( x ) ∣ d x = 0 \lim_{n\to\infty}\int_a^b|f(x)-\varphi_n(x)|dx=0 nlimabf(x)φn(x)dx=0
证明

构造性证明。

∀ n ∈ N \forall n\in\mathbb{N} nN

取等分间隔 Δ = b − a n \displaystyle \Delta=\frac{b-a}{n} Δ=nba 和等分点 x i = i ⋅ Δ   ( i = 0 , 1 , . . . , n ) x_i=i\cdot\Delta\ (i=0,1,...,n) xi=iΔ (i=0,1,...,n),记 Δ x i = x i − x i − 1 \Delta x_i=x_i-x_{i-1} Δxi=xixi1

f ( x ) f(x) f(x) 图形上取若干点 ( x i , f ( x i ) ) (x_i,f(x_i)) (xi,f(xi)),将这些点顺次连成折线,令 φ n ( x ) \varphi_n(x) φn(x) 为这些折线对应的分段函数,显然有 φ n ( x ) \varphi_n(x) φn(x) [ a , b ] [a,b] [a,b] 上连续。

M i = sup ⁡ { f ( x ) ∣ x ∈ [ x i − 1 , x i ] } ,   m i = inf ⁡ { f ( x ) ∣ x ∈ [ x i − 1 , x i ] } ,   w i = M i − m i M_i=\sup\{f(x)|x\in[x_{i-1},x_{i}]\},\ m_i=\inf\{f(x)|x\in[x_{i-1},x_{i}]\},\ w_i=M_i-m_i Mi=sup{f(x)x[xi1,xi]}, mi=inf{f(x)x[xi1,xi]}, wi=Mimi

现在证明 { φ n ( x ) } \{\varphi_n(x)\} {φn(x)} 满足题目要求。

因为 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b] 上可积, ∀ ε > 0 ,   ∃ δ > 0 \forall \varepsilon>0,\ \exists \delta>0 ε>0, δ>0 使得只要 Δ < δ \Delta < \delta Δ<δ 便有
∑ i = 1 n w i Δ x i < ε \sum_{i=1}^nw_i\Delta x_i< \varepsilon i=1nwiΔxi<ε
∀ x ∈ [ x i − 1 , x i ] \forall x\in[x_{i-1},x_i] x[xi1,xi],有 ∣ f ( x ) − φ n ( x ) ∣ < w i |f(x)-\varphi_n(x)|< w_i f(x)φn(x)<wi,根据积分的保序性有
0 ≤ ∫ x i − 1 x i ∣ f ( x ) − φ n ( x ) ∣ d x ≤ w i Δ x i 0\le\int_{x_{i-1}}^{x_i}|f(x)-\varphi_n(x)|dx\le w_i\Delta x_i 0xi1xif(x)φn(x)dxwiΔxi
求和后有
0 ≤ ∫ a b ∣ f ( x ) − φ n ( x ) ∣ d x ≤ ∑ i = 1 n w i Δ x i < ε 0\le\int_a^b|f(x)-\varphi_n(x)|dx\le \sum_{i=1}^nw_i\Delta x_i<\varepsilon 0abf(x)φn(x)dxi=1nwiΔxi<ε
证毕。

这个命题说明了一定程度上可用连续函数替换可积函数,由此能引出各种的应用,将在未来介绍。

3. 求证
3 n + 1 2 n + 2 < ∑ i = 1 n ( i n ) n < 2 \frac{3n+1}{2n+2}<\sum_{i=1}^n\left(\frac{i}{n}\right)^n<2 2n+23n+1<i=1n(ni)n<2
证明

先证明右边的不等式。

考虑到 f ( x ) = x n f(x)=x^n f(x)=xn 是单增函数,于是有
∑ i = 1 n − 1 ( i n ) n 1 n < ∫ 0 1 x n d x \sum_{i=1}^{n-1}\left(\frac{i}{n}\right)^n\frac{1}{n}<\int_0^1x^ndx\\ i=1n1(ni)nn1<01xndx
原因在于是矩形条面积小于曲边梯形面积。

整理后得到
∑ i = 1 n ( i n ) n < n n + 1 + 1 < 2 \sum_{i=1}^{n}\left(\frac{i}{n}\right)^n< \frac{n}{n+1}+1<2\\ i=1n(ni)n<n+1n+1<2
然后是左边的不等式。

考虑到 f ( x ) = x n f(x)=x^n f(x)=xn 是下凸函数,于是
( ( i − 1 n ) n + ( i n ) n ) 1 2 n > ∫ ( i − 1 ) / n i / n x n d x \left(\left(\frac{i-1}{n}\right)^n+\left(\frac{i}{n}\right)^n\right)\frac{1}{2n}>\int_{(i-1)/n}^{i/n} x^n dx ((ni1)n+(ni)n)2n1>(i1)/ni/nxndx
原因在于曲边梯形面积小于直角梯形面积。

于是
∑ i = 1 n ( ( i − 1 n ) n + ( i n ) n ) 1 2 n > ∫ 0 1 x n d x \sum_{i=1}^n\left(\left(\frac{i-1}{n}\right)^n+\left(\frac{i}{n}\right)^n\right)\frac{1}{2n}>\int_0^1 x^n dx i=1n((ni1)n+(ni)n)2n1>01xndx

∑ i = 1 n ( i n ) n − 1 2 ( n n ) n > n n + 1 \sum_{i=1}^n\left(\frac{i}{n}\right)^n-\frac{1}{2}\left(\frac{n}{n}\right)^n>\frac{n}{n+1} i=1n(ni)n21(nn)n>n+1n

∑ i = 1 n ( i n ) n > 3 n + 1 2 n + 2 \sum_{i=1}^n\left(\frac{i}{n}\right)^n>\frac{3n+1}{2n+2} i=1n(ni)n>2n+23n+1

证毕。

用积分处理求和式,这个技巧很经典了。搭配上函数的单调性和凸性也能证明一些有关求和式的不等式。

4. f ( x ) f(x) f(x) [ 0 , 1 ] [0,1] [0,1] 上连续,且 1 ≤ f ( x ) ≤ 3 1\le f(x)\le 3 1f(x)3,求证
∫ 0 1 f ( x ) d x ∫ 0 1 1 f ( x ) d x ≤ 4 3 \int_0^1f(x)dx\int_0^1\frac{1}{f(x)}dx\le\frac{4}{3} 01f(x)dx01f(x)1dx34
证明
( f ( x ) − 1 ) ( f ( x ) − 3 ) ≤ 0 f ( x ) + 3 f ( x ) ≤ 4 ∫ 0 1 f ( x ) d x + 3 ∫ 0 1 1 f ( x ) ≤ 4 \begin{aligned} (f(x)-1)(f(x)-3)&\le 0\\ f(x)+\frac{3}{f(x)}&\le 4\\ \int_0^1f(x)dx+3\int_0^1\frac{1}{f(x)}&\le 4 \end{aligned} (f(x)1)(f(x)3)f(x)+f(x)301f(x)dx+301f(x)1044
运用均值不等式即可证明原不等式。

5. a > 0 a>0 a>0,函数 y = φ ( x ) y=\varphi(x) y=φ(x) [ 0 , a ] [0,a] [0,a] 上连续且严格递增, φ ( 0 ) = 0 \varphi(0)=0 φ(0)=0,函数 x = ψ ( y ) x=\psi(y) x=ψ(y) φ ( x ) \varphi(x) φ(x) 的反函数,求证
∫ 0 a φ ( x ) + ∫ 0 b ψ ( x ) d x ≥ a b \int_0^a\varphi(x)+\int_0^b\psi(x)dx\ge ab 0aφ(x)+0bψ(x)dxab
证明

取分点 x i , y i   ( i = 0 , . . . , n ) x_i,y_i\ (i=0,...,n) xi,yi (i=0,...,n) 满足 x 0 = 0 , x n = a , x i < x i + 1 , y i = φ ( x i ) x_0=0,x_n=a,x_i<x_{i+1},y_i=\varphi(x_i) x0=0,xn=a,xi<xi+1,yi=φ(xi),于是
∑ i = 0 n − 1 y i ( x i + 1 − x i ) + ∑ i = 1 n x i ( y i − y i − 1 ) = x n y n − x 0 y 0 = a b \sum_{i=0}^{n-1}y_i(x_{i+1}-x_i)+\sum_{i=1}^nx_i(y_i-y_{i-1})=x_ny_n-x_0y_0=ab i=0n1yi(xi+1xi)+i=1nxi(yiyi1)=xnynx0y0=ab
n → ∞ n\to\infty n
∫ 0 a φ ( x ) + ∫ 0 φ ( a ) ψ ( x ) d x = a φ ( a ) \int_0^a\varphi(x)+\int_0^{\varphi(a)}\psi(x)dx=a\varphi(a) 0aφ(x)+0φ(a)ψ(x)dx=aφ(a)
作函数 F ( b ) F(b) F(b) 使得
F ( b ) = ∫ 0 a φ ( x ) + ∫ 0 b ψ ( x ) d x − a b F(b)=\int_0^a\varphi(x)+\int_0^b\psi(x)dx-ab F(b)=0aφ(x)+0bψ(x)dxab
因为 ψ ( x ) \psi(x) ψ(x) 连续,所以 F ( b ) F(b) F(b) 可导,于是
F ′ ( b ) = ψ ( b ) − a ≤ 0 F'(b)=\psi(b)-a\le 0 F(b)=ψ(b)a0
于是 F ( b ) F(b) F(b) [ 0 , φ ( a ) ] [0,\varphi(a)] [0,φ(a)] 上递减,又因为 F ( φ ( a ) ) = 0 F(\varphi(a))=0 F(φ(a))=0 于是 F ( b ) ≥ 0 F(b)\ge 0 F(b)0 于是原不等式成立。

6. f ( x ) f(x) f(x) [ 0 , 1 ] [0,1] [0,1] 上连续, μ n = ∫ 0 1 ( 1 − t 2 ) n d t \displaystyle \mu_n=\int_0^1(1-t^2)^ndt μn=01(1t2)ndt,求证
lim ⁡ n → ∞ 1 μ n ∫ 0 1 ( 1 − t 2 ) n f ( t ) d t = f ( 0 ) \lim_{n\to\infty}\frac{1}{\mu_n}\int_0^1(1-t^2)^nf(t)dt=f(0) nlimμn101(1t2)nf(t)dt=f(0)
证明

不妨假设 f ( 0 ) = 0 f(0)=0 f(0)=0,否则可将 f ( 0 ) f(0) f(0) 移位至等式左端。

首先证明, ∀ δ ∈ ( 0 , 1 ) \forall \delta\in(0,1) δ(0,1),有下式成立
lim ⁡ n → ∞ ∫ δ 1 ( 1 − t 2 ) n d t ∫ 0 1 ( 1 − t 2 ) n d t = 0 \lim_{n\to\infty}\frac{\displaystyle \int_\delta^1(1-t^2)^ndt}{\displaystyle\int_0^1(1-t^2)^ndt}=0 nlim01(1t2)ndtδ1(1t2)ndt=0
原因是
∫ δ 1 ( 1 − t 2 ) n d t ∫ 0 1 ( 1 − t 2 ) n d t ≤ ∫ δ 1 ( 1 − t 2 ) n d t ∫ 0 1 2 δ ( 1 − t 2 ) n d t ≤ ( 1 − δ 2 ) n ( 1 − 1 4 δ 2 ) n \begin{aligned} \frac{\displaystyle \int_\delta^1(1-t^2)^ndt}{\displaystyle\int_0^1(1-t^2)^ndt}&\le\frac{\displaystyle \int_\delta^1(1-t^2)^ndt}{\displaystyle\int_0^{{1\over 2}\delta}(1-t^2)^ndt}\\ &\le\frac{(1-\delta^2)^n}{(1-\frac{1}{4}\delta^2)^n} \end{aligned} 01(1t2)ndtδ1(1t2)ndt021δ(1t2)ndtδ1(1t2)ndt(141δ2)n(1δ2)n
1 − δ 2 < 1 − 1 4 δ 2 1-\delta^2<1-\frac{1}{4}\delta^2 1δ2<141δ2,故该极限成立。

类似的有
lim ⁡ n → ∞ ∫ 0 δ ( 1 − t 2 ) n d t ∫ 0 1 ( 1 − t 2 ) n d t = 1 \lim_{n\to\infty}\frac{\displaystyle \int_0^\delta(1-t^2)^ndt}{\displaystyle\int_0^1(1-t^2)^ndt}=1 nlim01(1t2)ndt0δ(1t2)ndt=1
因为 f ( x ) f(x) f(x) 连续,记 ∣ f ( x ) ∣ |f(x)| f(x) 的某上界为 M M M

由积分第一中值定理知 ∃ ξ ∈ [ 0 , δ ] \exists \xi\in[0,\delta] ξ[0,δ] 使得
∫ 0 δ ( 1 − t 2 ) n ∣ f ( t ) ∣ d t = ∣ f ( ξ ) ∣ ∫ 0 δ ( 1 − t 2 ) n d t \int_0^\delta(1-t^2)^n|f(t)|dt=|f(\xi)|\int_0^\delta(1-t^2)^ndt 0δ(1t2)nf(t)dt=f(ξ)0δ(1t2)ndt

∣ 1 μ n ∫ 0 1 ( 1 − t 2 ) n f ( t ) d t ∣ ≤ 1 μ n ( ∣ f ( ξ ) ∣ ∫ 0 δ ( 1 − t 2 ) n d t + M ∫ δ 1 ( 1 − t 2 ) n d t ) \left|\frac{1}{\mu_n}\int_0^1(1-t^2)^nf(t)dt\right|\le\frac{1}{\mu_n}\left(|f(\xi)|\int_0^\delta(1-t^2)^ndt+M\int_\delta^1(1-t^2)^ndt\right) μn101(1t2)nf(t)dtμn1(f(ξ)0δ(1t2)ndt+Mδ1(1t2)ndt)
根据之前证明的两个极限可知命题成立。

证毕。

分段估计的技巧需要熟练掌握。

该证明中运用分段估计的原因是 ( 1 − t 2 ) n (1-t^2)^n (1t2)n μ n \mu_n μn 的贡献集中在 t t t 靠近 0 0 0 的部分。

7. f ( x ) f(x) f(x) [ 0 , T ] [0,T] [0,T] 上可积, g ( x ) g(x) g(x) [ 0 , ∞ ) [0,\infty) [0,) 的任意有限子区间上可积, g ( x ) g(x) g(x) 是周期为 T T T 的周期函数,且 g ( x ) g(x) g(x) 不变号,求证
lim ⁡ λ → + ∞ ∫ 0 T f ( x ) g ( λ x ) d x = 1 T ∫ 0 T g ( x ) d x ∫ 0 T f ( x ) d x \lim_{\lambda\to+\infty}\int_0^Tf(x)g(\lambda x)dx=\frac{1}{T}\int_0^Tg(x)dx\int_0^Tf(x)dx λ+lim0Tf(x)g(λx)dx=T10Tg(x)dx0Tf(x)dx
证明

首先先添加 f ( x ) f(x) f(x) [ 0 , T ] [0,T] [0,T] 上连续的条件,在这种情况下证明结论成立,然后再推广成可积的情况。

n = ⌊ λ ⌋ , τ = ⌊ λ ⌋ λ T \displaystyle n=\lfloor\lambda\rfloor,\tau=\frac{\lfloor\lambda\rfloor}{\lambda}T n=λ,τ=λλT,则 τ n = T λ , lim ⁡ λ → + ∞ τ = T \displaystyle\frac{\tau}{n}=\frac{T}{\lambda},\lim_{\lambda\to+\infty}\tau=T nτ=λT,λ+limτ=T,故
lim ⁡ λ → + ∞ ∫ 0 T f ( x ) g ( λ x ) d x = lim ⁡ λ → + ∞ ∫ 0 τ f ( x ) g ( λ x ) d x \lim_{\lambda\to+\infty}\int_0^Tf(x)g(\lambda x)dx=\lim_{\lambda\to+\infty}\int_0^\tau f(x)g(\lambda x)dx λ+lim0Tf(x)g(λx)dx=λ+lim0τf(x)g(λx)dx

∫ 0 τ f ( x ) g ( λ x ) d x = ∑ k = 1 n ∫ ( k − 1 ) τ n k τ n f ( x ) g ( λ x ) d x = ∑ k = 1 n ∫ ( k − 1 ) T λ k T λ f ( x ) g ( λ x ) d x \begin{aligned} \int_0^{\tau}f(x)g(\lambda x)dx&=\sum_{k=1}^n\int_{(k-1)\tau\over n}^{k\tau\over n}f(x)g(\lambda x)dx\\ &=\sum_{k=1}^n\int_{(k-1)T\over\lambda}^{kT\over\lambda}f(x)g(\lambda x)dx \end{aligned} 0τf(x)g(λx)dx=k=1nn(k1)τnkτf(x)g(λx)dx=k=1nλ(k1)TλkTf(x)g(λx)dx
因为 f ( x ) f(x) f(x) 连续,利用积分第一中值定理,可取 ξ k ∈ [ ( k − 1 ) T λ , k T λ ] ( 1 ≤ k ≤ n ) \displaystyle \xi_k\in\left[{(k-1)T\over \lambda},{kT\over\lambda}\right](1\le k\le n) ξk[λ(k1)T,λkT](1kn) ξ n + 1 ∈ [ τ , T ] \xi_{n+1}\in[\tau,T] ξn+1[τ,T],使得上式等于
  ∑ k = 1 n f ( ξ k ) ∫ ( k − 1 ) T λ k T λ g ( λ x ) d x = ∑ k = 1 n f ( ξ k ) λ ∫ 0 T g ( x ) d x = ∑ k = 1 n + 1 f ( ξ k ) λ ∫ 0 T g ( x ) d x − f ( ξ n + 1 ) λ ∫ 0 T g ( x ) d x \begin{aligned} &\quad \ \sum_{k=1}^{n}f(\xi_k)\int_{(k-1)T\over\lambda}^{kT\over\lambda}g(\lambda x)dx\\ &=\sum_{k=1}^{n}\frac{f(\xi_k)}{\lambda}\int_{0}^{T}g(x)dx\\ &=\sum_{k=1}^{n+1}\frac{f(\xi_k)}{\lambda}\int_{0}^{T}g(x)dx-\frac{f(\xi_{n+1})}{\lambda}\int_{0}^{T}g(x)dx\\ \end{aligned}  k=1nf(ξk)λ(k1)TλkTg(λx)dx=k=1nλf(ξk)0Tg(x)dx=k=1n+1λf(ξk)0Tg(x)dxλf(ξn+1)0Tg(x)dx
注意到 f ( x ) f(x) f(x) [ 0 , T ] [0,T] [0,T] 上可积,故
lim ⁡ λ → + ∞ 1 T ∑ k = 1 n + 1 f ( ξ k ) T λ ∫ 0 T g ( x ) d x = 1 T ∫ 0 T f ( x ) d x ∫ 0 T g ( x ) d x \lim_{\lambda\to+\infty}\frac{1}{T}\sum_{k=1}^{n+1}\frac{f(\xi_k)T}{\lambda}\int_{0}^{T}g(x)dx=\frac{1}{T}\int_0^Tf(x)dx\int_0^Tg(x)dx λ+limT1k=1n+1λf(ξk)T0Tg(x)dx=T10Tf(x)dx0Tg(x)dx

lim ⁡ λ → + ∞ f ( ξ n + 1 ) λ ∫ 0 T g ( x ) d x = 0 \lim_{\lambda\to+\infty}\frac{f(\xi_{n+1})}{\lambda}\int_{0}^{T}g(x)dx=0 λ+limλf(ξn+1)0Tg(x)dx=0

lim ⁡ λ → + ∞ ∫ 0 T f ( x ) g ( λ x ) d x = 1 T ∫ 0 T g ( x ) d x ∫ 0 T f ( x ) d x \lim_{\lambda\to+\infty}\int_0^Tf(x)g(\lambda x)dx=\frac{1}{T}\int_0^Tg(x)dx\int_0^Tf(x)dx λ+lim0Tf(x)g(λx)dx=T10Tg(x)dx0Tf(x)dx
然后考虑如何去掉连续的条件,注意到可积函数可以用连续函数逼近,这在前面的习题2中证明过。

去掉连续的条件,设 f ( x ) f(x) f(x) [ 0 , T ] [0,T] [0,T] 上可积,我们取函数序列 { φ n ( x ) } \{\varphi_n(x)\} {φn(x)} 满足
lim ⁡ n → + ∞ ∫ 0 T ∣ φ n ( x ) − f ( x ) ∣ d x = 0 \lim_{n\to+\infty}\int_0^T|\varphi_n(x)-f(x)|dx=0 n+lim0Tφn(x)f(x)dx=0
容易证明
lim ⁡ n → + ∞ ∫ 0 T φ n ( x ) d x = ∫ 0 T f ( x ) d x \lim_{n\to+\infty}\int_0^T\varphi_n(x)dx=\int_0^Tf(x) dx n+lim0Tφn(x)dx=0Tf(x)dx
以及
lim ⁡ n → + ∞ ∫ 0 T ∣ φ n ( x ) g ( λ x ) − f ( x ) g ( λ x ) ∣ d x = 0 \lim_{n\to+\infty}\int_0^T|\varphi_n(x)g(\lambda x)-f(x)g(\lambda x)|dx=0 n+lim0Tφn(x)g(λx)f(x)g(λx)dx=0
为了书写方便,记 R = ∫ 0 T f ( x ) g ( λ x ) d x ,   G = 1 T ∫ 0 T g ( x ) d x ,   F = ∫ 0 T f ( x ) d x \displaystyle R=\int_0^Tf(x)g(\lambda x)dx,\ G=\frac{1}{T}\int_0^Tg(x)dx,\ F=\int_0^T f(x)dx R=0Tf(x)g(λx)dx, G=T10Tg(x)dx, F=0Tf(x)dx

再记 S = ∫ 0 T φ n ( x ) g ( λ x ) d x ,   ϕ = ∫ 0 T φ n ( x ) d x \displaystyle S=\int_0^T\varphi_n(x)g(\lambda x)dx,\ \phi=\int_0^T \varphi_n(x)dx S=0Tφn(x)g(λx)dx, ϕ=0Tφn(x)dx

∀ ε > 0 \forall \varepsilon >0 ε>0 可以取充分大的 λ \lambda λ 使得
∣ S − G ⋅ ϕ ∣ < ε |S-G\cdot\phi|<\varepsilon\\ SGϕ<ε
再取充分大的 n n n 使得
∣ ϕ − F ∣ < ε ∣ R − S ∣ < ε |\phi-F|<\varepsilon\\ |R-S|<\varepsilon\\ ϕF<εRS<ε
于是
∣ R − G ⋅ F ∣ ≤ ∣ R − S ∣ + ∣ S − G ⋅ ϕ ∣ + ∣ G ⋅ ϕ − G ⋅ F ∣ < ( 2 + G ) ε \begin{aligned} |R-G\cdot F|&\le|R-S|+|S-G\cdot\phi|+|G\cdot\phi-G\cdot F|\\ &<(2+G)\varepsilon \end{aligned} RGFRS+SGϕ+GϕGF<(2+G)ε
于是
∣ ∫ 0 T f ( x ) g ( λ x ) d x − 1 T ∫ 0 T g ( x ) d x ∫ 0 T f ( x ) d x ∣ < ( 2 + G ) ε \left|\int_0^Tf(x)g(\lambda x)dx-\frac{1}{T}\int_0^Tg(x)dx\int_0^Tf(x)dx\right|<(2+G)\varepsilon 0Tf(x)g(λx)dxT10Tg(x)dx0Tf(x)dx<(2+G)ε
所以原结论成立。

用连续函数逼近可积函数的分析技巧在分析学中经常用到。

8. 计算
∫ 0 1 ln ⁡ ( 1 + x ) 1 + x 2 d x \int_0^1 \frac{\ln(1+x)}{1+x^2}dx 011+x2ln(1+x)dx

x = tan ⁡ t   ( t ∈ [ 0 , π 4 ] ) x=\tan t\ (t\in[0,\frac{\pi}{4}]) x=tant (t[0,4π]),则
原式 = ∫ 0 π 4 ln ⁡ ( 1 + tan ⁡ t ) d t = ∫ 0 π 4 ( ln ⁡ 2 + ln ⁡ sin ⁡ ( t + π 4 ) − ln ⁡ cos ⁡ t ) d t = π 8 ln ⁡ 2 + ∫ 0 π 4 ln ⁡ sin ⁡ ( t + π 4 ) d t − ∫ 0 π 4 ln ⁡ cos ⁡ t d t \begin{aligned} \text{原式}&=\int_0^{\pi\over4}\ln(1+\tan t)dt\\ &=\int_0^{\pi\over4}\left(\ln\sqrt{2}+\ln\sin(t+\frac{\pi}{4})-\ln\cos t\right)dt\\ &=\frac{\pi}{8}\ln 2+\int_0^{\pi\over4}\ln\sin(t+\frac{\pi}{4})dt-\int_0^{\pi\over4}\ln\cos tdt \end{aligned} 原式=04πln(1+tant)dt=04π(ln2 +lnsin(t+4π)lncost)dt=8πln2+04πlnsin(t+4π)dt04πlncostdt

∫ 0 π 4 ln ⁡ sin ⁡ ( t + π 4 ) d t = ∫ π 4 0 ln ⁡ sin ⁡ ( π 4 − u + π 4 ) d ( π 4 − u ) = ∫ 0 π 4 ln ⁡ sin ⁡ ( π 2 − u ) d u = ∫ 0 π 4 ln ⁡ cos ⁡ u d u \begin{aligned} \int_0^{\pi\over4}\ln\sin(t+\frac{\pi}{4})dt&=\int_{\pi\over 4}^0\ln\sin(\frac{\pi}{4}-u+\frac{\pi}{4})d\left(\frac{\pi}{4}-u\right)\\ &=\int_0^{\pi\over 4}\ln\sin(\frac{\pi}{2}-u)du\\ &=\int_0^{\pi\over 4}\ln\cos udu\\ \end{aligned} 04πlnsin(t+4π)dt=4π0lnsin(4πu+4π)d(4πu)=04πlnsin(2πu)du=04πlncosudu
于是
∫ 0 1 ln ⁡ ( 1 + x ) 1 + x 2 = π 8 ln ⁡ 2 \int_0^1 \frac{\ln(1+x)}{1+x^2}=\frac{\pi}{8}\ln 2 011+x2ln(1+x)=8πln2

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值