定积分习题(二)

习题(二)承自定积分框架,主要涉及积分不等式的运用。

1. f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b] 上非负可积,且 ∫ a b f ( x ) d x = 1 \displaystyle \int_a^b f(x)dx=1 abf(x)dx=1,求证
( ∫ a b f ( x ) cos ⁡ k x d x ) 2 + ( ∫ a b f ( x ) sin ⁡ k x d x ) 2 ≤ 1 \left(\int_a^bf(x)\cos kx dx\right)^2+\left(\int_a^bf(x)\sin kx dx\right)^2\le 1 (abf(x)coskxdx)2+(abf(x)sinkxdx)21
证明

由柯西不等式的积分推广得
( ∫ a b f ( x ) cos ⁡ k x d x ) 2 = ( ∫ a b f ( x ) f ( x ) cos ⁡ k x d x ) 2 ≤ ( ∫ a b f ( x ) d x = 1 ) ( ∫ a b f ( x ) cos ⁡ 2 k x d x ) = ∫ a b f ( x ) cos ⁡ 2 k x d x \begin{aligned} \left(\int_a^bf(x)\cos kx dx\right)^2&=\left(\int_a^b\sqrt{f(x)}\sqrt{f(x)}\cos kx dx\right)^2\\ &\le\left(\int_a^b f(x)dx=1\right)\left(\int_a^bf(x)\cos^2 kx dx\right)\\ &=\int_a^bf(x)\cos^2 kx dx \end{aligned} (abf(x)coskxdx)2=(abf(x) f(x) coskxdx)2(abf(x)dx=1)(abf(x)cos2kxdx)=abf(x)cos2kxdx
对于 sin ⁡ \sin sin 也有相应的不等式,将两个不等式求和即可证明。

2. f ( x ) f(x) f(x) [ 0 , 1 ] [0,1] [0,1] 上连续可微, f ( 0 ) = f ( 1 ) = 0 f(0)=f(1)=0 f(0)=f(1)=0,求证
( ∫ 0 1 x f ( x ) d x ) 2 ≤ 1 45 ∫ 0 1 ( f ′ ( x ) ) 2 d x \left(\int_0^1xf(x)dx\right)^2\le \frac{1}{45}\int_0^1(f'(x))^2dx (01xf(x)dx)245101(f(x))2dx
证明
∫ 0 1 x f ( x ) d x = x 2 f ( x ) ∣ 0 1 − 1 2 ∫ 0 1 x 2 f ′ ( x ) = − 1 2 ∫ 0 1 x 2 f ′ ( x ) \begin{aligned} \int_0^1xf(x)dx&=\left.\frac{x}{2}f(x)\right|_0^1-\frac{1}{2}\int_0^1x^2f'(x)\\ &=-\frac{1}{2}\int_0^1x^2f'(x) \end{aligned} 01xf(x)dx=2xf(x)012101x2f(x)=2101x2f(x)
任取实数 a , b a,b a,b b > 0 b>0 b>0,则有
2 b ∫ 0 1 x f ( x ) d x = ∫ 0 1 ( a − b x 2 ) f ′ ( x ) d x 2b\int_0^1xf(x)dx=\int_0^1(a-bx^2)f'(x)dx 2b01xf(x)dx=01(abx2)f(x)dx
使用柯西施瓦兹不等式得
4 b 2 ( ∫ 0 1 x f ( x ) d x ) 2 ≤ ∫ 0 1 ( a − b x 2 ) 2 d x ∫ 0 1 ( f ′ ( x ) ) 2 d x = 1 15 ( 15 a 2 − 10 a b + 3 b 2 ) ∫ 0 1 ( f ′ ( x ) ) 2 d x \begin{aligned} 4b^2\left(\int_0^1xf(x)dx\right)^2&\le\int_0^1(a-bx^2)^2dx\int_0^1(f'(x))^2dx\\ &=\frac{1}{15}(15a^2-10ab+3b^2)\int_0^1(f'(x))^2dx \end{aligned} 4b2(01xf(x)dx)201(abx2)2dx01(f(x))2dx=151(15a210ab+3b2)01(f(x))2dx
c = a b \displaystyle c = \frac{a}{b} c=ba,整理后得到
( ∫ 0 1 x f ( x ) d x ) 2 ≤ 1 60 ( 15 c 2 − 10 c + 3 ) ∫ 0 1 ( f ′ ( x ) ) 2 d x \left(\int_0^1xf(x)dx\right)^2\le\frac{1}{60}(15c^2-10c+3)\int_0^1(f'(x))^2dx (01xf(x)dx)2601(15c210c+3)01(f(x))2dx
上面的不等式对任意实数 c c c 都满足,而 min ⁡ { 15 c 2 − 10 c + 3 ∣ c ∈ R } = 4 3 \displaystyle \min\{15c^2-10c+3|c\in\mathbb{R}\}=\frac{4}{3} min{15c210c+3cR}=34,故原不等式成立。

证毕。

3. f ( x ) f(x) f(x) 连续可微,且 f ( 0 ) = f ( 1 ) = 0 f(0)=f(1)=0 f(0)=f(1)=0求证

( 1 )   f 2 ( x ) ≤ 1 4 ∫ 0 1 f ′ ( x ) 2 d x \displaystyle (1)\ f^2(x)\le\frac{1}{4}\int_0^1f'(x)^2dx (1) f2(x)4101f(x)2dx

( 2 )   ∫ 0 1 f 2 ( x ) d x ≤ 1 4 ∫ 0 1 f ′ ( x ) 2 d x \displaystyle (2)\ \int_0^1f^2(x)dx\le\frac{1}{4}\int_0^1f'(x)^2dx (2) 01f2(x)dx4101f(x)2dx

证明

( 1 ) (1) (1)

应用柯西施瓦兹不等式得
f 2 ( x ) = ( ∫ 0 x f ′ ( t ) d t ) 2 ≤ ∫ 0 x 1 2 d t ∫ 0 x f ′ ( t ) 2 d t = x ∫ 0 x f ′ ( t ) 2 d t f^2(x)=\left(\int_0^xf'(t)dt\right)^2\le\int_0^x1^2dt\int_0^xf'(t)^2dt= x\int_0^xf'(t)^2dt f2(x)=(0xf(t)dt)20x12dt0xf(t)2dt=x0xf(t)2dt
以及
f 2 ( x ) = ( ∫ 1 x f ′ ( t ) d t ) 2 ≤ ( 1 − x ) ∫ x 1 f ′ ( t ) 2 d t f^2(x)=\left(\int_1^xf'(t)dt\right)^2 \le (1-x)\int_x^1f'(t)^2dt f2(x)=(1xf(t)dt)2(1x)x1f(t)2dt
第一个不等式的右端在 [ 0 , 1 ] [0,1] [0,1] 上单增,第二个不等式的右端在 [ 0 , 1 ] [0,1] [0,1] 上单减,且当 x = 1 2 x=\frac{1}{2} x=21 时两个右端均相等,于是

f 2 ( x ) ≤ 1 2 ∫ 0 1 2 f ′ ( t ) 2 d t f^2(x)\le \frac{1}{2}\int_0^{1\over 2}f'(t)^2dt f2(x)21021f(t)2dt

f 2 ( x ) ≤ 1 2 ∫ 1 2 1 f ′ ( t ) 2 d t f^2(x)\le \frac{1}{2}\int_{1\over 2}^1f'(t)^2dt f2(x)21211f(t)2dt

( 2 ) (2) (2)
f 2 ( x ) ≤ x ∫ 0 1 f ′ ( t ) 2 d t f^2(x)\le x\int_0^1f'(t)^2dt f2(x)x01f(t)2dt

f 2 ( x ) ≤ ( 1 − x ) ∫ 0 1 f ′ ( t ) 2 d t f^2(x)\le (1-x)\int_0^1f'(t)^2dt f2(x)(1x)01f(t)2dt

注意到当 x ∈ [ 0 , 0.5 ] x\in[0,0.5] x[0,0.5] x ≤ 1 − x x\le 1-x x1x,当 x ∈ [ 0.5 , 1 ] x\in[0.5,1] x[0.5,1] 1 − x ≤ x 1-x\le x 1xx

所以对 ∫ 0 1 f 2 ( x ) \displaystyle\int_0^1f^2(x) 01f2(x) 进行分段估计。
∫ 0 1 f 2 ( x ) d x = ∫ 0 1 2 f 2 ( x ) d x + ∫ 1 2 1 f 2 ( x ) d x ≤ ( ∫ 0 1 2 x d x + ∫ 1 2 1 ( 1 − x ) d x ) ∫ 0 1 f ′ ( x ) 2 d x = 1 4 ∫ 0 1 f ′ ( x ) 2 d x \begin{aligned} \int_0^1f^2(x)dx&=\int_0^{1\over 2}f^2(x)dx+\int_{1\over 2}^1f^2(x)dx\\ &\le\left(\int_0^{1\over2}xdx+\int_{1\over2}^1(1-x)dx\right)\int_0^1f'(x)^2dx\\ &=\frac{1}{4}\int_0^1f'(x)^2dx \end{aligned} 01f2(x)dx=021f2(x)dx+211f2(x)dx(021xdx+211(1x)dx)01f(x)2dx=4101f(x)2dx

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值