定积分习题(三)

习题(三)主要涉及积分第一中值定理的运用。

1. f ( x ) f(x) f(x) [ 0 , π ] [0,\pi] [0,π] 上连续且满足
∫ 0 π f ( x ) cos ⁡ x d x = 0 = ∫ 0 π f ( x ) sin ⁡ x d x \int_0^\pi f(x)\cos xdx=0=\int_0^\pi f(x)\sin xdx 0πf(x)cosxdx=0=0πf(x)sinxdx
求证 f ( x ) f(x) f(x) ( 0 , π ) (0,\pi) (0,π) 内至少有两个零点。

证明

f ( x ) f(x) f(x) ( 0 , π ) (0,\pi) (0,π) 内没有零点,可以证明 ∫ 0 π f ( x ) sin ⁡ x d x ≠ 0 \displaystyle \int_0^\pi f(x)\sin xdx\neq 0 0πf(x)sinxdx=0,矛盾。

故设 ξ ∈ ( 0 , π ) \xi\in(0,\pi) ξ(0,π),满足 f ( ξ ) = 0 f(\xi)=0 f(ξ)=0

反设 f ( x ) f(x) f(x) [ 0 , π ] [0,\pi] [0,π] 有且仅有 ξ \xi ξ 这一个零点,现在推矛盾。

因为 f ( x ) f(x) f(x) [ 0 , ξ ] [0,\xi] [0,ξ] [ ξ , π ] [\xi,\pi] [ξ,π] 上分别不变号。

再由积分第一中值定理可得 ∃ ξ 1 ∈ [ 0 , ξ ] ,   ξ 2 ∈ [ ξ , π ] \exists \xi_1\in[0,\xi],\ \xi_2\in[\xi,\pi] ξ1[0,ξ], ξ2[ξ,π] 使得
∫ 0 π f ( x ) cos ⁡ x d x = ∫ 0 ξ f ( x ) cos ⁡ x d x + ∫ ξ π f ( x ) cos ⁡ x d x = f ( ξ 1 ) ∫ 0 ξ cos ⁡ x d x + f ( ξ 2 ) ∫ ξ π cos ⁡ x d x = ( f ( ξ 1 ) − f ( ξ 2 ) ) sin ⁡ ( ξ ) \begin{aligned} \int_0^\pi f(x)\cos xdx&=\int_0^\xi f(x)\cos xdx+\int_\xi^\pi f(x)\cos xdx\\ &=f(\xi_1)\int_0^\xi\cos xdx+f(\xi_2)\int_\xi^\pi \cos xdx\\ &=(f(\xi_1)-f(\xi_2))\sin(\xi)\\ \end{aligned} 0πf(x)cosxdx=0ξf(x)cosxdx+ξπf(x)cosxdx=f(ξ1)0ξcosxdx+f(ξ2)ξπcosxdx=(f(ξ1)f(ξ2))sin(ξ)
注意到 ∫ 0 ξ f ( x ) cos ⁡ x d x \displaystyle \int_0^\xi f(x)\cos xdx 0ξf(x)cosxdx ∫ ξ π f ( x ) cos ⁡ x d x \displaystyle\int_\xi^\pi f(x)\cos xdx ξπf(x)cosxdx 两者其中之一至少不为 0 0 0

所以 f ( ξ 1 ) f(\xi_1) f(ξ1) f ( ξ 2 ) f(\xi_2) f(ξ2) 其中之一至少不为 0 0 0,而 f ( ξ 1 ) f(\xi_1) f(ξ1) f ( ξ 2 ) f(\xi_2) f(ξ2) 符号不可能相同,所以 f ( ξ 1 ) − f ( ξ 2 ) ≠ 0 f(\xi_1)-f(\xi_2)\neq 0 f(ξ1)f(ξ2)=0

矛盾,故 f ( x ) f(x) f(x) [ 0 , π ] [0,\pi] [0,π] 上至少有两零点。

2. f ( x ) f(x) f(x) [ 0 , 2 π ] [0,2\pi] [0,2π] 上可积,求证
lim ⁡ n → ∞ ∫ 0 2 π f ( x ) sin ⁡ n x d x = 0 \lim_{n\to\infty}\int_0^{2\pi} f(x)\sin nx dx =0 nlim02πf(x)sinnxdx=0
证明

n n n 相当大时, sin ⁡ n x \sin n x sinnx 会在小区间内在 − 1 -1 1 1 1 1 之间来回波动,若 f ( x ) f(x) f(x) 在小区间内波动较小,则 f ( x ) sin ⁡ n x f(x)\sin nx f(x)sinnx 在小区间上的积分值会因 sin ⁡ n x \sin nx sinnx 的正负波动而抵消至 0 0 0,因此考虑将积分切成小块分别讨论。

x i = i ⋅ 2 π n   ( i = 0 , . . . , n ) \displaystyle x_i=i\cdot\frac{2\pi}{n}\ (i=0,...,n) xi=in2π (i=0,...,n) Δ x i = x i − x i − 1 \Delta x_i=x_i-x_{i-1} Δxi=xixi1 M i = sup ⁡ { f ( x ) ∣ x ∈ [ x i − 1 , x i ] } M_i=\sup\{f(x)|x\in[x_{i-1},x_{i}]\} Mi=sup{f(x)x[xi1,xi]} m i = inf ⁡ { f ( x ) ∣ x ∈ [ x i − 1 , x i ] } m_i=\inf\{f(x)|x\in[x_{i-1},x_{i}]\} mi=inf{f(x)x[xi1,xi]} w i = M i − m i w_i=M_i-m_i wi=Mimi

∀ ε > 0 ,   ∃ N ,   ∀ n > N \forall \varepsilon>0,\ \exists N,\ \forall n>N ε>0, N, n>N,有 ∑ i = 1 n w i Δ x i < ε \displaystyle \sum_{i=1}^nw_i\Delta x_i <\varepsilon i=1nwiΔxi<ε

任取 i ∈ { 1 , 2 , . . . , n } i\in\{1,2,...,n\} i{1,2,...,n},考虑积分的一个小块
∫ ( i − 1 ) 2 π n i 2 π n f ( x ) sin ⁡ n x d x = ∫ ( 2 i − 2 ) π n ( 2 i − 1 ) π n f ( x ) sin ⁡ n x d x + ∫ ( 2 i − 1 ) π n 2 i π n f ( x ) sin ⁡ n x d x \begin{aligned} \int_{(i-1){2\pi\over n}}^{i{2\pi\over n}} f(x)\sin nx dx&=\int_{(2i-2){\pi\over n}}^{(2i-1){\pi\over n}} f(x)\sin nx dx+\int_{(2i-1){\pi\over n}}^{2i{\pi\over n}} f(x)\sin nx dx\\ \end{aligned} (i1)n2πin2πf(x)sinnxdx=(2i2)nπ(2i1)nπf(x)sinnxdx+(2i1)nπ2inπf(x)sinnxdx
注意到 sin ⁡ n x \sin nx sinnx I 1 = [ ( 2 i − 2 ) π n , ( 2 i − 1 ) π n ] I_1=[(2i-2){\pi\over n},(2i-1){\pi\over n}] I1=[(2i2)nπ,(2i1)nπ] 上非负,在 I 2 = [ ( 2 i − 1 ) π n , 2 i π n ] I_2=[(2i-1){\pi\over n},2i{\pi\over n}] I2=[(2i1)nπ,2inπ] 上非正,由积分第一中值定理可知 ∃ ξ 1 ∈ I 1 , ξ 2 ∈ I 2 \exists \xi_1\in I_1,\xi_2\in I_2 ξ1I1,ξ2I2,使得
∫ ( 2 i − 2 ) π n ( 2 i − 1 ) π n f ( x ) sin ⁡ n x d x = f ( ξ 1 ) ∫ ( 2 i − 2 ) π n ( 2 i − 1 ) π n sin ⁡ n x d x = f ( ξ 1 ) n \begin{aligned} \int_{(2i-2){\pi\over n}}^{(2i-1){\pi\over n}} f(x)\sin nx dx&=f(\xi_1)\int_{(2i-2){\pi\over n}}^{(2i-1){\pi\over n}}\sin nx dx\\ &={f(\xi_1)\over n} \end{aligned} (2i2)nπ(2i1)nπf(x)sinnxdx=f(ξ1)(2i2)nπ(2i1)nπsinnxdx=nf(ξ1)

∫ ( 2 i − 1 ) π n 2 i π n f ( x ) sin ⁡ n x d x = f ( ξ 2 ) ∫ ( 2 i − 1 ) π n 2 i π n sin ⁡ n x d x = − f ( ξ 2 ) n \begin{aligned} \int_{(2i-1){\pi\over n}}^{2i{\pi\over n}} f(x)\sin nx dx&=f(\xi_2)\int_{(2i-1){\pi\over n}}^{2i{\pi\over n}}\sin nx dx\\ &=-{f(\xi_2)\over n} \end{aligned} (2i1)nπ2inπf(x)sinnxdx=f(ξ2)(2i1)nπ2inπsinnxdx=nf(ξ2)

将小块们整合起来就得到
∣ ∫ 0 2 π f ( x ) sin ⁡ n x d x ∣ ≤ ∑ i = 1 n ∣ ∫ x i − 1 x i f ( x ) sin ⁡ n x d x ∣ = ∑ i = 1 n 1 n ∣ f ( ξ 1 ) − f ( ξ 2 ) ∣ ≤ ∑ i = 1 n w i Δ x i < ε \begin{aligned} \left|\int_0^{2\pi}f(x)\sin nxdx\right|&\le\sum_{i=1}^{n}\left|\int_{x_{i-1}}^{x_i}f(x)\sin nx dx\right|\\ &=\sum_{i=1}^n{1\over n}|f(\xi_1)-f(\xi_2)|\\ &\le \sum_{i=1}^nw_i\Delta x_i\\ &<\varepsilon \end{aligned} 02πf(x)sinnxdxi=1nxi1xif(x)sinnxdx=i=1nn1f(ξ1)f(ξ2)i=1nwiΔxi<ε
证毕。

这种给定积分分段然后分别估计的技巧须熟练掌握。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值