连续性习题选做

连续性的性质

1.1 连续性的定义(连续、左连续、右连续),可去间断点、第一类间断点、第二类间断点的定义。

1.2 若函数在某点处连续,则在改点的某领域内函数有界。

1.3 f ( x ) f(x) f(x) 为集合 I ⊂ R I\sub\mathbb{R} IR 上的连续的严格单调函数,值域为 J J J,则 f ( x ) f(x) f(x) 的反函数 f − ( x ) f^-(x) f(x) 为在 J J J 上的连续的严格单调函数。

1.4 连续性可以通过四则运算传递。

1.5 连续函数的复合函数在相应定义域上连续。

1.6 f ( x ) f(x) f(x) x 0 x_0 x0 处连续(左连续、右连续)的充分必要条件是,对任何数列 x n x_n xn 满足 x n → x 0 x_n\to x_0 xnx0 x n → x 0 − x_n\to x_0^- xnx0 x n → x 0 + x_n\to x_0^+ xnx0+),有 lim ⁡ f ( x n ) = f ( x 0 ) \lim f(x_n)=f(x_0) limf(xn)=f(x0)

1.7 一致连续的定义。

1.8 一致连续可以通过四则运算传递。

1.9 一致连续函数的复合函数在相应定义域上一致连续。

闭区间上连续函数的性质

2.1 闭区间上的连续函数必有界。

2.2 闭区间上的连续函数可取到最大值或最小值。

2.3 闭区间上的连续函数可取到介于最大值和最小值之间的任何数(介值定理)。

2.4 闭区间上的连续函数在该区间上一致连续。

实数系的基本定理

3.1 戴德金连续性公理。

3.2 确界存在定理。

3.3 单调收敛定理。

3.4 区间套定理。

3.5 有限开覆盖定理。

3.6 致密性定理、聚点定理。

3.7 柯西收敛定理。

这七个定理实际上是等价的。

习题选做

4.1 f ( x ) f(x) f(x) ( a , b ) (a,b) (a,b) 上连续,且 lim ⁡ x → a + f ( x ) \lim_{x\to a^+}f(x) limxa+f(x) lim ⁡ x → b − f ( x ) \lim_{x\to b^-} f(x) limxbf(x) 存在,求证 f ( x ) f(x) f(x) ( a , b ) (a,b) (a,b) 上一致连续。

证明

f ( x ) f(x) f(x) 的定义域拓展为 [ a , b ] [a,b] [a,b]
f ( a ) = lim ⁡ x → a + f ( x ) f ( b ) = lim ⁡ x → b − f ( x ) f(a)=\lim_{x\to a^+}f(x)\quad f(b)=\lim_{x\to b^-} f(x) f(a)=xa+limf(x)f(b)=xblimf(x)
于是 f ( x ) f(x) f(x) 在闭区间 [ a , b ] [a,b] [a,b] 上连续,所以 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b] 上一致连续。

证毕。

值得注意的是,若把 f ( x ) f(x) f(x) 在左右端点处有极限的条件换成 f ( x ) f(x) f(x) ( a , b ) (a,b) (a,b) 上有界连续,则不足以保证 f ( x ) f(x) f(x) ( a , b ) (a,b) (a,b) 上一致连续,反例是
f ( x ) = sin ⁡ ( 1 x ) ( x ∈ ( 0 , + ∞ ) ) f(x)=\sin(\frac{1}{x})\quad (x\in (0,+\infty)) f(x)=sin(x1)(x(0,+))
若将条件中的 a a a 换成 − ∞ -\infty b b b 换成 + ∞ +\infty +,则结论仍然成立。

4.2 f ( x ) f(x) f(x) ( a , b ] (a,b] (a,b] [ b , c ) [b,c) [b,c) 上一致连续,求证 f ( x ) f(x) f(x) ( a , c ) (a,c) (a,c) 上一致连续。

证明

x ∈ ( a , b ] , y ∈ [ b , c ) x\in(a,b],y\in[b,c) x(a,b],y[b,c),则有
∣ f ( x ) − f ( y ) ∣ = ∣ f ( x ) − f ( b ) + f ( b ) − f ( y ) ∣ ≤ ∣ f ( x ) − f ( b ) ∣ + ∣ f ( y ) − f ( b ) ∣ |f(x)-f(y)|=|f(x)-f(b)+f(b)-f(y)|\le|f(x)-f(b)|+|f(y)-f(b)| f(x)f(y)=f(x)f(b)+f(b)f(y)f(x)f(b)+f(y)f(b)
然后容易证明 f ( x ) f(x) f(x) ( a , c ) (a,c) (a,c) 上一致连续。

证毕。

若将题目中的 [ b , c ) [b,c) [b,c) 改成 ( b , c ) (b,c) (b,c) 其它条件不变,则 f ( x ) f(x) f(x) x = b x=b x=b 处不一定连续,所以 f ( x ) f(x) f(x) ( a , c ) (a,c) (a,c) 上自然不一定一致连续。

这个命题说明了,若函数 f ( x ) f(x) f(x) 在若干闭区间上一致连续,则 f ( x ) f(x) f(x) 在这些闭区间的并集上也一致连续。

4.3 f ( x ) f(x) f(x) ( 0 , + ∞ ) (0,+\infty) (0,+) 上连续而有界, c > 0 c>0 c>0,求证存在数列 { x n } \{x_n\} {xn} 趋向于 + ∞ +\infty +,使得
lim ⁡ n → ∞ f ( x n + c ) − f ( x n ) = 0 \lim_{n\to\infty} f(x_n+c)-f(x_n)=0 nlimf(xn+c)f(xn)=0
对于每个 n ∈ N n\in\mathbb{N} nN,我们构造出 x n ≥ n x_n\ge n xnn,满足 ∣ f ( x n + c ) − f ( x n ) ∣ < 1 n |f(x_n+c)-f(x_n)|<\frac{1}{n} f(xn+c)f(xn)<n1

g ( x ) = f ( x + c ) − f ( x ) g(x)=f(x+c)-f(x) g(x)=f(x+c)f(x),则可知 g ( x ) g(x) g(x) ( 0 , + ∞ ) (0,+\infty) (0,+) 上的有界连续函数。

现在反设不存在我们想要的 x n x_n xn,即 ∀ x ≥ n \forall x\ge n xn ∣ g ( x ) ∣ ≥ 1 n |g(x)|\ge\frac{1}{n} g(x)n1

g ( n ) > 0 g(n)>0 g(n)>0,则必有 ∀ x ≥ n \forall x\ge n xn g ( x ) ≥ 1 n g(x)\ge\frac{1}{n} g(x)n1,否则 ∃ x 0 > n \exists x_0>n x0>n,满足 g ( x 0 ) < − 1 n g(x_0)<-\frac{1}{n} g(x0)<n1,所以 g ( n ) g ( x 0 ) < 0 g(n)g(x_0)<0 g(n)g(x0)<0

g ( x ) g(x) g(x) [ n , x 0 ] [n,x_0] [n,x0] 上连续和介值定理可知, ∃ ξ ∈ ( n , x 0 ) \exists \xi\in(n,x_0) ξ(n,x0),满足 g ( ξ ) = 0 g(\xi)=0 g(ξ)=0,这与 ∣ g ( x ) ∣ ≥ 1 n ( x ≥ n ) |g(x)|\ge\frac{1}{n}(x\ge n) g(x)n1(xn) 矛盾。

于是 ∀ m ∈ N \forall m\in\mathbb{N} mN,有 f ( n + m ⋅ c ) − f ( n ) = m n f(n+m\cdot c)-f(n)=\frac{m}{n} f(n+mc)f(n)=nm,于是 lim ⁡ m → ∞ f ( n + m ⋅ c ) = + ∞ \lim_{m\to\infty}f(n+m\cdot c)=+\infty limmf(n+mc)=+,这与 f ( x ) f(x) f(x) ( 0 , + ∞ ) (0,+\infty) (0,+) 上有界矛盾。

g ( n ) < 0 g(n)<0 g(n)<0,类似的,也能推出矛盾。

∃ x 0 ≥ n \exists x_0\ge n x0n,满足 ∣ g ( x 0 ) ∣ < 1 n |g(x_0)|<\frac{1}{n} g(x0)<n1,于是可取 x n = x 0 x_n=x_0 xn=x0

证毕。

4.4 设函数 f ( x ) f(x) f(x) x = 0 x=0 x=0 连续且对任何 x , y ∈ ( − ∞ , + ∞ ) x,y\in(-\infty,+\infty) x,y(,+),均有 f ( x + y ) = f ( x ) + f ( y ) f(x+y)=f(x)+f(y) f(x+y)=f(x)+f(y),求证:

(i) f ( x ) f(x) f(x) ( − ∞ , + ∞ ) (-\infty,+\infty) (,+) 上连续。

(ii) ∃ a ∈ R \exists a\in\mathbb{R} aR,使 f ( x ) = a x f(x)=ax f(x)=ax

证明

即便去掉 f ( x ) f(x) f(x) x = 0 x=0 x=0 出连续的条件,也能得出 ∀ a ∈ Q \forall a\in\mathbb{Q} aQ,有 f ( a x ) = a f ( x ) f(ax)=af(x) f(ax)=af(x)

因为 f ( 0 ) = f ( 0 + 0 ) = f ( 0 ) + f ( 0 ) f(0)=f(0+0)=f(0)+f(0) f(0)=f(0+0)=f(0)+f(0),所以 f ( 0 ) = 0 f(0)=0 f(0)=0

所以 ∀ n ∈ N + \forall n\in\mathbb{N}^+ nN+,有 f ( n x ) = n f ( x ) f(nx)=nf(x) f(nx)=nf(x) f ( − n x ) = f ( 0 ) − f ( n x ) = − n f ( x ) f(-nx)=f(0)-f(nx)=-nf(x) f(nx)=f(0)f(nx)=nf(x)

所以 ∀ p , q ∈ Z ∧ q ≠ 0 \forall p,q\in\mathbb{Z}\wedge q\neq 0 p,qZq=0,有 f ( p q x ) = 1 q f ( p x ) = p q f ( x ) f(\frac{p}{q}x)=\frac{1}{q}f(px)=\frac{p}{q}f(x) f(qpx)=q1f(px)=qpf(x)

所以 ∀ a ∈ Q \forall a\in\mathbb{Q} aQ,有 f ( a x ) = a f ( x ) f(ax)=af(x) f(ax)=af(x)

(i) ∀ x 0 ≠ 0 \forall x_0\neq 0 x0=0,取 n ∈ N n\in\mathbb{N} nN 满足 x 0 n ∈ [ − δ 2 , δ 2 ] \frac{x_0}{n}\in[-\frac{\delta}{2},\frac{\delta}{2}] nx0[2δ,2δ]

∀ ε > 0 \forall \varepsilon>0 ε>0 ∃ δ > 0 \exists \delta >0 δ>0,使 ∀ x ∈ [ − δ , δ ] \forall x\in[-\delta,\delta] x[δ,δ],有 ∣ f ( x ) ∣ < ε n |f(x)|<\frac{\varepsilon}{n} f(x)<nε

所以 ∀ ∣ x − x 0 ∣ < δ 2 n \forall |x-x_0|<\frac{\delta}{2n} xx0<2nδ,有 x n ∈ [ − δ , δ ] \frac{x}{n}\in[-\delta,\delta] nx[δ,δ],所以 ∣ f ( x ) − f ( x 0 ) ∣ = n ∣ f ( x n ) − f ( x 0 n ) ∣ < n ⋅ ε n = ε |f(x)-f(x_0)|=n|f(\frac{x}{n})-f(\frac{x_0}{n})|<n\cdot \frac{\varepsilon}{n}=\varepsilon f(x)f(x0)=nf(nx)f(nx0)<nnε=ε

所以
lim ⁡ x → x 0 f ( x ) = f ( x 0 ) \lim_{x\to x_0}f(x)=f(x_0) xx0limf(x)=f(x0)
所以 f ( x ) f(x) f(x) ( − ∞ , + ∞ ) (-\infty,+\infty) (,+) 上连续。

(ii)取 a = f ( 1 ) a=f(1) a=f(1)

∀ x 0 ∈ ( − ∞ , + ∞ ) \forall x_0\in(-\infty,+\infty) x0(,+),取有理数列 { x n } \{x_n\} {xn} 趋向于 x 0 x_0 x0,则有
f ( x 0 ) = lim ⁡ x → x 0 f ( x ) = lim ⁡ n → ∞ f ( x n ) = lim ⁡ n → ∞ x n ⋅ f ( 1 ) = f ( 1 ) x 0 f(x_0)=\lim_{x\to x_0}f(x)=\lim_{n\to\infty}f(x_n)=\lim_{n\to\infty}x_n\cdot f(1)=f(1)x_0 f(x0)=xx0limf(x)=nlimf(xn)=nlimxnf(1)=f(1)x0
所以有 f ( x ) = f ( 1 ) x f(x)= f(1)x f(x)=f(1)x

证毕。

若将题目中的在 x = 0 x=0 x=0 处连续的条件改为在某一点 x = x 0 x=x_0 x=x0 处连续,则结论仍然成立。

f ( x + y ) = f ( x ) + f ( y ) f(x+y)=f(x)+f(y) f(x+y)=f(x)+f(y) 的条件相当于是给出了一个函数方程,这样的函数方程历史上由柯西第一次发表相关的研究,故称作柯西方程。

由前面的讨论我们已经知道,若对柯西方程加上 f ( x ) f(x) f(x) 在某处连续的条件,则可证明齐次线性函数 f ( x ) = f ( 1 ) x f(x)=f(1)x f(x)=f(1)x 是唯一解函数。

但若去掉关于连续性的条件,则 f ( x ) = f ( 1 ) x f(x)=f(1)x f(x)=f(1)x 不是唯一解,可以构造出处处不连续的的反例,但这个构造这个反例需要用到函数项级数相关的知识,故这里先不给出反例。

4.5 a > 0 a>0 a>0,函数 f ( x ) f(x) f(x) [ a , + ∞ ) [a,+\infty) [a,+) 上满足利普希兹条件: ∃ L > 0 \exists L>0 L>0,对任意 x , y ∈ [ a , + ∞ ) x,y\in[a,+\infty) x,y[a,+),都有
∣ f ( x ) − f ( y ) ∣ ≤ L ∣ x − y ∣ |f(x)-f(y)|\le L|x-y| f(x)f(y)Lxy
求证函数 f ( x ) x \frac{f(x)}{x} xf(x) [ a , + ∞ ) [a,+\infty) [a,+) 上一致连续。

证明

易证 f ( x ) f(x) f(x) [ a , + ∞ ] [a,+\infty] [a,+] 上一致连续。

任取 x , y ∈ [ a , + ∞ ] x,y\in[a,+\infty] x,y[a,+],设 M = sup ⁡ { f ( t ) ∣ t ∈ [ x , y ] } M=\sup\{f(t)|t\in[x,y]\} M=sup{f(t)t[x,y]}
∣ f ( x ) x − f ( y ) y ∣ = ∣ f ( x ) − f ( y ) x + f ( y ) ( 1 x − 1 y ) ∣ ≤ L x ∣ x − y ∣ + ∣ f ( y ) ∣ ∣ x − y x y ∣ ≤ ( L a + M a 2 ) ∣ x − y ∣ \begin{aligned} \left|\frac{f(x)}{x}-\frac{f(y)}{y}\right|&=\left|\frac{f(x)-f(y)}{x}+f(y)\left(\frac{1}{x}-\frac{1}{y}\right)\right|\\ &\le \frac{L}{x}|x-y|+|f(y)|\left|\frac{x-y}{xy}\right|\\ &\le \left(\frac{L}{a}+\frac{M}{a^2}\right)|x-y| \end{aligned} xf(x)yf(y)=xf(x)f(y)+f(y)(x1y1)xLxy+f(y)xyxy(aL+a2M)xy
于是 f ( x ) x \frac{f(x)}{x} xf(x) [ a , + ∞ ) [a,+\infty) [a,+) 上一致连续。

利普希兹条件是一个比一致连续还要强的条件,它在函数项级数、微分方程当中有着广泛的应用。

4.6 设函数 f ( x ) f(x) f(x) [ a , + ∞ ) [a,+\infty) [a,+) 上一致连续且对任意的 x ≥ a x\ge a xa,都有
lim ⁡ x → + ∞ f ( x + n ) = 0 \lim_{x\to+\infty}f(x+n)=0 x+limf(x+n)=0
求证
lim ⁡ x → + ∞ f ( x ) = 0 \lim_{x\to+\infty}f(x)=0 x+limf(x)=0
证明

∀ ε > 0 \forall \varepsilon>0 ε>0 ∃ δ > 0 \exists\delta>0 δ>0 ∀ ∣ x − y ∣ < δ \forall |x-y|<\delta xy<δ ∣ f ( x ) − f ( y ) ∣ < ε |f(x)-f(y)|<\varepsilon f(x)f(y)<ε

n ∈ N n\in\mathbb{N} nN 1 n < δ \frac{1}{n}<\delta n1<δ,取 x k = k n   ( k = 0 , 1 , 2 , . . . , n ) x_k=\frac{k}{n}\ (k=0,1,2,...,n) xk=nk (k=0,1,2,...,n)

因为 l i m m → ∞ f ( x k + m ) = 0 lim_{m\to\infty}f(x_k+m)=0 limmf(xk+m)=0,所以 ∃ M k ∈ N \exists M_k\in\mathbb{N} MkN ∀ m > M k \forall m>M_k m>Mk ∣ f ( x k + m ) ∣ < ε |f(x_k+m)|<\varepsilon f(xk+m)<ε

M = max ⁡ { M k } + 1 M=\max\{M_k\}+1 M=max{Mk}+1 ∀ x ≥ M \forall x\ge M xM ∃ k , l ∈ N ∧ 0 ≤ k ≤ n ∧ l ≥ M \exists k,l\in\mathbb{N}\wedge 0\le k\le n\wedge l\ge M k,lN0knlM,满足 x ∈ [ x k + l , x k + 1 + l ] x\in[x_k+l,x_{k+1}+l] x[xk+l,xk+1+l]

于是 ∣ x − ( x k + l ) ∣ < δ |x-(x_k+l)|<\delta x(xk+l)<δ,所以 ∣ f ( x ) − f ( x k + l ) ∣ < ε |f(x)-f(x_k+l)|<\varepsilon f(x)f(xk+l)<ε,所以 ∣ f ( x ) ∣ < 2 ε |f(x)|<2\varepsilon f(x)<2ε

证毕。

4.7 证明介值定理,设 f ( x ) f(x) f(x) 是在 [ a , b ] [a,b] [a,b] 上的连续函数,求证对任何在 f ( a ) f(a) f(a) f ( b ) f(b) f(b) 之间的数 C C C,存在 ξ ∈ ( a , b ) \xi\in(a,b) ξ(a,b) 使得 f ( ξ ) = C f(\xi)=C f(ξ)=C

证明

不妨设 f ( a ) < C < f ( b ) f(a)<C<f(b) f(a)<C<f(b)


ξ = sup ⁡ { t ∣ f ( x ) < C , x ∈ [ a , t ] } \xi=\sup\{t|f(x)<C,x\in[a,t]\} ξ=sup{tf(x)<C,x[a,t]}
现在证明 f ( ξ ) = C f(\xi)=C f(ξ)=C

f ( x ) f(x) f(x) x = a x=a x=a 处的连续性和 f ( a ) < C f(a)<C f(a)<C 可知, ξ ∈ ( a , b ] \xi\in(a,b] ξ(a,b]

ξ \xi ξ 的定义可知, ∀ x ∈ [ a , ξ ) \forall x\in[a,\xi) x[a,ξ) f ( x ) < C f(x)<C f(x)<C。(*)

ξ = b \xi=b ξ=b,则 ∀ x ∈ [ a , b ) \forall x\in[a,b) x[a,b),有 f ( x ) < C f(x)<C f(x)<C,所以
f ( b ) = lim ⁡ x → b − f ( x ) ≤ C f(b)=\lim_{x\to b^-}f(x)\le C f(b)=xblimf(x)C
与题设矛盾,则有 ξ ∈ ( a , b ) \xi\in(a,b) ξ(a,b)

f ( ξ ) > C f(\xi)>C f(ξ)>C,由 f ( x ) f(x) f(x) x = ξ x=\xi x=ξ 处的连续性可知, ∃ x 0 ∈ [ a , ξ ) \exists x_0\in[a,\xi) x0[a,ξ),满足 f ( x 0 ) > C f(x_0) > C f(x0)>C,这与 (*)矛盾。

f ( ξ ) < C f(\xi)<C f(ξ)<C,由 f ( x ) f(x) f(x) x = ξ x=\xi x=ξ 处的连续性可知, ∃ δ > 0 \exists\delta>0 δ>0,满足 ∀ x ∈ [ ξ , ξ + δ ] \forall x\in[\xi,\xi+\delta] x[ξ,ξ+δ],有 f ( x ) < C f(x)<C f(x)<C,所以有
ξ + δ ∈ { t ∣ f ( x ) < C , x ∈ [ a , t ] } \xi+\delta\in\{t|f(x)<C,x\in[a,t]\} ξ+δ{tf(x)<C,x[a,t]}
ξ + δ > ξ \xi+\delta>\xi ξ+δ>ξ,这与 ξ \xi ξ 作为上确界的定义矛盾。

所以 f ( ξ ) = C f(\xi)=C f(ξ)=C

证毕。

这个证明是通过构造一个解来证明存在性,构造方法的本质是遍历:将 x x x 遍历 [ a , b ] [a,b] [a,b],直到找到符合要求的第一个解,为了判断遍历到什么数时该停止遍历,需要设计合适的中止条件。

在本例中遍历的过程就是
ξ = sup ⁡ { t ∣ f ( x ) < C , x ∈ [ a , t ] } \xi=\sup\{t|f(x)<C,x\in[a,t]\} ξ=sup{tf(x)<C,x[a,t]}
中止条件是 f ( x ) < C , x ∈ [ a , t ] f(x)<C,x\in[a,t] f(x)<C,x[a,t]

构造出解后可以通过反证法来验证得到的解是否满足条件。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值