导数习题选做

导数

1.1 导数的定义(导数、左导数、右导数)。

1.2 (左、右)可导必(左、右)连续。

1.3 f ( x ) f(x) f(x) ( a , b ) (a,b) (a,b) 上处处可导的严格单调函数,值域为 ( α , β ) (\alpha, \beta) (α,β),满足 f ′ ( x ) ≠ 0 f^\prime(x)\neq 0 f(x)=0,则 f ( x ) f(x) f(x) 的反函数 φ ( x ) \varphi(x) φ(x) ( α , β ) (\alpha,\beta) (α,β) 上处处可导的严格单调函数,且满足
φ ′ ( y ) = 1 f ′ ( x ) , y = f ( x ) \varphi^\prime(y)=\frac{1}{f^\prime(x)},\quad y=f(x) φ(y)=f(x)1,y=f(x)
若将开区间 ( a , b ) (a,b) (a,b) 扩展为闭区间 [ a , b ] [a,b] [a,b],其它条件不变,也有相应的结论成立
φ + ′ ( α ) = 1 f + ′ ( a ) , φ − ′ ( β ) = 1 f − ′ ( b ) \varphi^\prime_{+}(\alpha)=\frac{1}{f^\prime_+(a)},\quad \varphi^\prime_{-}(\beta)=\frac{1}{f^\prime_-(b)} φ+(α)=f+(a)1,φ(β)=f(b)1
1.4 导数四则运算。

1.5 导数的复合运算(链式法则)。

1.6 f ( x ) f(x) f(x) x = x 0 x=x_0 x=x0 处的导数 f ′ ( x 0 ) > 0 f^\prime(x_0)>0 f(x0)>0 (或 < 0 <0 <0),则 ∃ δ > 0 \exists\delta>0 δ>0 ∀ x 1 ∈ ( x 0 , x 0 + δ ) , x 2 ∈ ( x 0 − δ , x 0 ) \forall x_1\in(x_0,x_0+\delta),x_2\in(x_0-\delta,x_0) x1(x0,x0+δ),x2(x0δ,x0),有 f ( x 1 ) > f ( x 0 ) , f ( x 2 ) < f ( x 0 ) f(x_1)>f(x_0),f(x_2)<f(x_0) f(x1)>f(x0),f(x2)<f(x0)(或 f ( x 1 ) < f ( x 0 ) , f ( x 2 ) > f ( x 0 ) f(x_1)<f(x_0),f(x_2)>f(x_0) f(x1)<f(x0),f(x2)>f(x0))。

1.7 分段连续和分段光滑的定义。

隐函数与含参函数的导数、高阶导数

2.1 隐函数求导。

2.2 含参函数求导。

2.3 高阶导数的定义。

f ( x ) f(x) f(x) n n n 阶导用 f ( n ) ( x ) f^{(n)}(x) f(n)(x) 表示

2.4 高阶导数的莱布尼兹公式。

u ( x ) u(x) u(x) v ( x ) v(x) v(x) 在某定义域上 n n n 次可导,则有
( u ( x ) v ( x ) ) ( n ) = ∑ k = 0 n ( n k ) u ( k ) ( x ) v ( n − k ) ( x ) (u(x)v(x))^{(n)}=\sum_{k=0}^{n}{n\choose k}u^{(k)}(x)v^{(n-k)}(x) (u(x)v(x))(n)=k=0n(kn)u(k)(x)v(nk)(x)
这个公式可以用来计算一些特殊函数的高阶导数。

微分与高阶微分

3.1 微分的定义。

3.2 f ( x ) f(x) f(x) x = x 0 x=x_0 x=x0 处可微的充分必要条件是 f ( x ) f(x) f(x) x = x 0 x=x_0 x=x0 处可导。

3.3 一阶微分的不变性。

一阶微分具有不变性,但高阶微分则不具有不变性。

习题选做

1. f ( x ) f(x) f(x) 在闭区间 [ a , b ] [a,b] [a,b] 上处处可导,问 f ( x ) f(x) f(x) 的导函数是否有界?

不一定。

反例如下
f ( x ) = { x x sin ⁡ ( 1 x ) ( x ≠ 0 ) 0 ( x = 0 ) f(x)=\left\{\begin{aligned} &x\sqrt{x}\sin(\frac{1}{x})&(x\neq 0)\\ &0&(x=0)\\ \end{aligned}\right. f(x)=xx sin(x1)0(x=0)(x=0)
f ( x ) f(x) f(x) [ − 1 , 1 ] [-1,1] [1,1] 上处处可导,且 f ′ ( 0 ) = 0 f^\prime(0)=0 f(0)=0

但当 x ≠ 0 x\neq 0 x=0
f ′ ( x ) = 3 2 x sin ⁡ ( 1 x ) − 1 x cos ⁡ ( 1 x ) lim ⁡ x → 0 f ′ ( x ) = − ∞ f^\prime(x)=\frac{3}{2}\sqrt{x}\sin(\frac{1}{x})-\frac{1}{\sqrt{x}}\cos(\frac{1}{x})\\ \lim_{x\to 0}f^\prime(x)=-\infty f(x)=23x sin(x1)x 1cos(x1)x0limf(x)=
导函数 f ′ ( x ) f^\prime(x) f(x) 无界。

2. 黎曼函数 R ( x ) R(x) R(x) 是定义在 ( − ∞ , + ∞ ) (-\infty,+\infty) (,+) 上的一个有界函数
R ( x ) = { 1 p ( x = q p ,   gcd ⁡ ( p , q ) = 1 ,   p ∈ N +   , q ∈ Z ) 0 ( x ∉ Q ) R(x)=\left\{\begin{aligned} &\frac{1}{p}&(x=\frac{q}{p},\ \gcd(p,q)=1,\ p\in\mathbb{N}^+\ ,q\in\mathbb{Z})\\ &0&(x\not\in\mathbb{Q}) \end{aligned}\right. R(x)=p10(x=pq, gcd(p,q)=1, pN+ ,qZ)(xQ)
求证黎曼函数处处不可导。

证明

由定义可知 R ( x ) R(x) R(x) 函数满足以下条件

(i) R ( x ) R(x) R(x) 是周期为 1 1 1 的函数。

(ii) R ( x ) R(x) R(x) 在所有有理点处不连续,在所有无理点处连续。

只需证明 R ( x ) R(x) R(x) [ 0 , 1 ] [0,1] [0,1] 上的无理点处不可导即可。

x 0 ∈ ( 0 , 1 ) x_0\in(0,1) x0(0,1) x 0 = 0. a 1 a 2 a 3 a 4 . . . ‾ x_0=\overline{0.a_1a_2a_3a_4...} x0=0.a1a2a3a4...,其中 a i a_i ai x 0 x_0 x0 的第 i i i 位小数, ∗ ∗ ∗ ‾ \overline{***} 代表十进制数。

构造有理数数列 { r n } \{r_n\} {rn},满足 r n r_n rn x 0 x_0 x0 的前 n n n 位小数。
r n = 0. a 1 a 2 . . . a n r_n=0.a_1a_2...a_n rn=0.a1a2...an
于是有
R ( r n ) = R ( a 1 a 2 . . . a n ‾ 1 0 n ) ≥ 1 1 0 n R(r_n)=R(\frac{\overline{a_1a_2...a_n}}{10^n})\ge\frac{1}{10^n} R(rn)=R(10na1a2...an)10n1
以及
∣ x 0 − r n ∣ = 0.0...0 a n + 1 a n + 2 . . . ‾ < 1 1 0 n |x_0-r_n|=\overline{0.0...0a_{n+1}a_{n+2}...}<\frac{1}{10^n} x0rn=0.0...0an+1an+2...<10n1
于是有
∣ R ( r n ) − R ( x 0 ) r n − x 0 ∣ > 1 \left|\frac{R(r_n)-R(x_0)}{r_n-x_0}\right|>1 rnx0R(rn)R(x0)>1
所以
lim ⁡ n → ∞ ∣ R ( r n ) − R ( x 0 ) r n − x 0 ∣ ≥ 1 \lim_{n\to\infty}\left|\frac{R(r_n)-R(x_0)}{r_n-x_0}\right|\ge 1 nlimrnx0R(rn)R(x0)1
但是,若取无理数数列 x n x_n xn 趋向于 x 0 x_0 x0,则有 ∣ R ( x n ) − R ( x 0 ) ∣ = 0 |R(x_n)-R(x_0)|=0 R(xn)R(x0)=0,于是
lim ⁡ n → ∞ ∣ R ( x n ) − R ( x 0 ) x n − x 0 ∣ = 0 \lim_{n\to\infty}\left|\frac{R(x_n)-R(x_0)}{x_n-x_0}\right|=0 nlimxnx0R(xn)R(x0)=0

lim ⁡ n → ∞ r n = x 0 = lim ⁡ n → ∞ x n \lim_{n\to\infty}r_n=x_0=\lim_{n\to\infty}x_n nlimrn=x0=nlimxn
所以 R ( x ) R(x) R(x) x 0 x_0 x0 处不可导,再由 x 0 x_0 x0 的任意性可知 R ( x ) R(x) R(x) [ 0 , 1 ] [0,1] [0,1] 之间的所有无理点处均不可导,从而 R ( x ) R(x) R(x) ( − ∞ , + ∞ ) (-\infty,+\infty) (,+) 上处处不可导。

3. f ( x ) f(x) f(x) x = x 0 x=x_0 x=x0 可导,且 f ′ ( x 0 ) = 0 f^\prime(x_0)=0 f(x0)=0,求证 ∣ f ( x ) ∣ |f(x)| f(x) x = x 0 x=x_0 x=x0 处可导,且导数为 0 0 0

证明
0 ≤ ∣ ∣ f ( x ) ∣ − ∣ f ( x 0 ) ∣ x − x 0 ∣ ≤ ∣ f ( x ) − f ( x 0 ) x − x 0 ∣ 0\le\left|\frac{|f(x)|-|f(x_0)|}{x-x_0}\right|\le\left|\frac{f(x)-f(x_0)}{x-x_0}\right| 0xx0f(x)f(x0)xx0f(x)f(x0)
取极限,再由夹逼定理立即可得。

4. 求证奇函数若可导,则其导函数必为偶函数,偶函数若可导,则其导函数必为奇函数。

证明

只证明奇函数的导函数为偶函数
f ′ ( x 0 ) = lim ⁡ x → x 0 = f ( x ) − f ( x 0 ) x − x 0 = lim ⁡ x → x 0 f ( − x ) − f ( − x 0 ) − x − ( − x 0 ) = f ′ ( − x 0 ) f^\prime(x_0)=\lim_{x\to x_0}=\frac{f(x)-f(x_0)}{x-x_0} =\lim_{x\to x_0}\frac{f(-x)-f(-x_0)}{-x-(-x_0)}=f^\prime(-x_0) f(x0)=xx0lim=xx0f(x)f(x0)=xx0limx(x0)f(x)f(x0)=f(x0)
5.

f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b] 上有定义,且在点 x 0 ∈ ( a , b ) x_0\in(a,b) x0(a,b) 处有左右导数。又设点列 { a n } ,   { b n } \{a_n\},\ \{b_n\} {an}, {bn} 满足条件: a < a n < x 0 < b n < b a<a_n<x_0<b_n<b a<an<x0<bn<b lim ⁡ a n = x 0 = lim ⁡ b n \lim a_n=x_0=\lim b_n liman=x0=limbn

求证存在非负实数 p p p q q q p + q = 1 p+q=1 p+q=1 和子列 { a n k } ,   { b n k } \{a_{n_k}\},\ \{b_{n_k}\} {ank}, {bnk},使得
lim ⁡ k → ∞ f ( b n k ) − f ( a n k ) b n k − a n k = p f + ′ ( x 0 ) + q f − ′ ( x 0 ) \lim_{k\to\infty}\frac{f(b_{n_k})-f(a_{n_k})}{b_{n_k}-a_{n_k}}=pf^\prime_+(x_0)+qf^\prime_-(x_0) klimbnkankf(bnk)f(ank)=pf+(x0)+qf(x0)
证明

首先,对任意 { a n } ,   { b n } \{a_n\},\ \{b_n\} {an}, {bn} 的子列 { a n k } ,   { b n k } \{a_{n_k}\},\ \{b_{n_k}\} {ank}, {bnk},均有
f ( b n k ) − f ( a n k ) b n k − a n k = f ( b n k ) − f ( x 0 ) b n k − x 0 ⋅ b n k − x 0 b n k − a n k + f ( x 0 ) − f ( a n k ) x 0 − a n k ⋅ x 0 − a n k b n k − a n k \frac{f(b_{n_k})-f(a_{n_k})}{b_{n_k}-a_{n_k}}=\frac{f(b_{n_k})-f(x_0)}{b_{n_k}-x_0}\cdot\frac{b_{n_k}-x_0}{b_{n_k}-a_{n_k}}+\frac{f(x_0)-f(a_{n_k})}{x_0-a_{n_k}}\cdot\frac{x_0-a_{n_k}}{b_{n_k}-a_{n_k}} bnkankf(bnk)f(ank)=bnkx0f(bnk)f(x0)bnkankbnkx0+x0ankf(x0)f(ank)bnkankx0ank
因为
0 ≤ b n − x 0 b n − a n ≤ 1 0\le\frac{b_n-x_0}{b_n-a_n}\le1 0bnanbnx01
根据致密性定理知有界数列一定存在收敛子列,我们取其中一个收敛子列,使得
lim ⁡ k → ∞ b n k − x 0 b n k − a n k = p , ( p ∈ [ 0 , 1 ] ) \lim_{k\to\infty}\frac{b_{n_k}-x_0}{b_{n_k}-a_{n_k}}=p,\quad(p\in[0,1]) klimbnkankbnkx0=p,(p[0,1])
则有
lim ⁡ k → ∞ x 0 − a n k b n k − a n k = lim ⁡ k → ∞ ( 1 − b n k − x 0 b n k − a n k ) = 1 − p \lim_{k\to\infty}\frac{x_0-a_{n_k}}{b_{n_k}-a_{n_k}}=\lim_{k\to\infty}\left(1-\frac{b_{n_k}-x_0}{b_{n_k}-a_{n_k}}\right)=1-p klimbnkankx0ank=klim(1bnkankbnkx0)=1p
在根据 f ( x ) f(x) f(x) 在点 x 0 x_0 x0 有左右导数知
lim ⁡ k → ∞ f ( b n k ) − f ( x 0 ) b n k − x 0 = f + ′ ( x 0 ) lim ⁡ k → ∞ f ( x 0 ) − f ( a n k ) x 0 − a n k = f − ′ ( x 0 ) \lim_{k\to\infty}\frac{f(b_{n_k})-f(x_0)}{b_{n_k}-x_0}=f^\prime_+(x_0)\\ \lim_{k\to\infty}\frac{f(x_0)-f(a_{n_k})}{x_0-a_{n_k}}=f^\prime_-(x_0)\\ klimbnkx0f(bnk)f(x0)=f+(x0)klimx0ankf(x0)f(ank)=f(x0)
所以有
lim ⁡ k → ∞ f ( b n k ) − f ( a n k ) b n k − a n k = p f + ′ ( x 0 ) + q f − ′ ( x 0 ) \lim_{k\to\infty}\frac{f(b_{n_k})-f(a_{n_k})}{b_{n_k}-a_{n_k}}=pf^\prime_+(x_0)+qf^\prime_-(x_0) klimbnkankf(bnk)f(ank)=pf+(x0)+qf(x0)
证毕。

事实上,通过巧妙设计 a n , b n a_n,b_n an,bn,我们可以取遍 p ∈ [ 0 , 1 ] p\in[0,1] p[0,1],一个设计方法是
b n = x 0 + p n ,   a n = x 0 − 1 − p n b_n=x_0+\frac{p}{n},\ a_n=x_0-\frac{1-p}{n} bn=x0+np, an=x0n1p
6. f ( 0 ) = 0 ,   f ′ ( 0 ) = a ,   a ∈ R f(0)=0,\ f^\prime(0)=a,\ a\in\mathbb{R} f(0)=0, f(0)=a, aR,求数列
x n = f ( 1 n 2 ) + f ( 2 n 2 ) + . . . + f ( n n 2 ) x_n=f(\frac{1}{n^2})+f(\frac{2}{n^2})+...+f(\frac{n}{n^2}) xn=f(n21)+f(n22)+...+f(n2n)
的极限。

利用可导必可微的性质得
x n = ∑ k = 0 n f ( k n 2 ) = ∑ k = 1 n ( f ( 0 ) + f ′ ( 0 ) ⋅ k n 2 + o ( k n 2 ) ) = ∑ k = 1 n ( a ⋅ k n 2 + o ( 1 n ) ) = ∑ k = 1 n ( a ⋅ k n 2 ) + o ( 1 ) = a ⋅ n ( n + 1 ) 2 n 2 + o ( 1 ) \begin{aligned} x_n&=\sum_{k=0}^{n}f(\frac{k}{n^2})\\ &=\sum_{k=1}^{n}\left(f(0)+f^\prime(0)\cdot\frac{k}{n^2}+o(\frac{k}{n^2})\right)\\ &=\sum_{k=1}^{n}\left(a\cdot\frac{k}{n^2}+o(\frac{1}{n})\right)\\ &=\sum_{k=1}^{n}\left(a\cdot\frac{k}{n^2}\right)+o(1)\\ &=a\cdot\frac{n(n+1)}{2n^2}+o(1)\\ \end{aligned} xn=k=0nf(n2k)=k=1n(f(0)+f(0)n2k+o(n2k))=k=1n(an2k+o(n1))=k=1n(an2k)+o(1)=a2n2n(n+1)+o(1)
所以
lim ⁡ n → ∞ x n = a 2 \lim_{n\to\infty}x_n=\frac{a}{2} nlimxn=2a
这题说明了微分可辅助极限计算。

7.

f ( x ) f(x) f(x) 在点 a a a 可导,求极限:

( i ) lim ⁡ n → ∞ ( f ( a + 1 n ) f ( a ) ) n ( ii ) lim ⁡ t → 0 f ( a + p t ) − f ( a + q t ) t \begin{aligned} &(\text{i})\lim_{n\to\infty}\left(\frac{f(a+\frac{1}{n})}{f(a)}\right)^n\\ &(\text{ii})\lim_{t\to 0}\frac{f(a+pt)-f(a+qt)}{t}\\ \end{aligned} (i)nlim(f(a)f(a+n1))n(ii)t0limtf(a+pt)f(a+qt)

( i ) (\text{i}) (i)
Origin = exp ⁡ ( lim ⁡ n → ∞ f ( a + 1 n ) − f ( a ) 1 / n ) = exp ⁡ ( f ′ ( a ) ) \begin{aligned} \text{Origin}&=\exp(\lim_{n\to\infty}\frac{f(a+\frac{1}{n})-f(a)}{1/n})\\ &=\exp(f^\prime(a)) \end{aligned} Origin=exp(nlim1/nf(a+n1)f(a))=exp(f(a))
( ii ) (\text{ii}) (ii)
Origin = ( p − q ) lim ⁡ t = 0 f ( a + p t ) − f ( a + q t ) p t − q t = ( p − q ) f ′ ( a ) \begin{aligned} \text{Origin}&=(p-q)\lim_{t=0}\frac{f(a+pt)-f(a+qt)}{pt-qt}\\ &=(p-q)f^\prime(a) \end{aligned} Origin=(pq)t=0limptqtf(a+pt)f(a+qt)=(pq)f(a)
8.

y = arcsin ⁡ ( x ) y=\arcsin(x) y=arcsin(x) 在点 0 0 0 的各阶导数。


y ′ = 1 1 + x ⋅ 1 1 − x y^\prime=\frac{1}{\sqrt{1+x}}\cdot\frac{1}{\sqrt{1-x}} y=1+x 11x 1
所以
y ( n + 1 ) = ∑ k = 0 n ( n k ) ( 1 1 + x ) ( k ) ( 1 1 − x ) ( n − k ) y^{(n+1)}=\sum_{k=0}^{n}{n\choose k}\left(\frac{1}{\sqrt{1+x}}\right)^{(k)}\left(\frac{1}{\sqrt{1-x}}\right)^{(n-k)} y(n+1)=k=0n(kn)(1+x 1)(k)(1x 1)(nk)
注意到
( 1 1 + x ) ( n ) = ( − 1 ) n ( − 1 2 ) n ‾ ( 1 + x ) − 1 2 − n = ( 1 2 ) n ‾ ( 1 + x ) − 1 2 − n = ( 2 n − 1 ) ! ! 2 n ( 1 + x ) − 1 2 − n \begin{aligned} \left(\frac{1}{\sqrt{1+x}}\right)^{(n)}&=(-1)^{n}\left(-\frac{1}{2}\right)^{\underline{n}}(1+x)^{-\frac{1}{2}-n}\\ &=\left(\frac{1}{2}\right)^{\overline{n}}(1+x)^{-\frac{1}{2}-n}\\ &=\frac{(2n-1)!!}{2^n}(1+x)^{-\frac{1}{2}-n}\\ \end{aligned} (1+x 1)(n)=(1)n(21)n(1+x)21n=(21)n(1+x)21n=2n(2n1)!!(1+x)21n

( 1 1 − x ) ( n ) = ( − 1 2 ) n ‾ ( 1 − x ) − 1 2 − n = ( − 1 ) n ( 1 2 ) n ‾ ( 1 − x ) − 1 2 − n = ( − 1 ) n ( 2 n − 1 ) ! ! 2 n ( 1 − x ) − 1 2 − n \begin{aligned} \left(\frac{1}{\sqrt{1-x}}\right)^{(n)}&=\left(-\frac{1}{2}\right)^{\underline{n}}(1-x)^{-\frac{1}{2}-n}\\ &=(-1)^n\left(\frac{1}{2}\right)^{\overline{n}}(1-x)^{-\frac{1}{2}-n}\\ &=(-1)^n\frac{(2n-1)!!}{2^n}(1-x)^{-\frac{1}{2}-n}\\ \end{aligned} (1x 1)(n)=(21)n(1x)21n=(1)n(21)n(1x)21n=(1)n2n(2n1)!!(1x)21n
若定义 ( − 1 ) ! ! = 1 (-1)!!=1 (1)!!=1,则有
y ( n + 1 ) = ( − 1 ) n 2 n ∑ k = 0 n ( n k ) ( 2 k − 1 ) ! ! ( 2 ( n − k ) − 1 ) ! ! ( 1 + x ) − 1 2 − n ( 1 − x ) − 1 2 − ( n − k ) y^{(n+1)}=\frac{(-1)^n}{2^n}\sum_{k=0}^{n}{n\choose k}(2k-1)!!(2(n-k)-1)!!(1+x)^{-\frac{1}{2}-n}(1-x)^{-\frac{1}{2}-(n-k)} y(n+1)=2n(1)nk=0n(kn)(2k1)!!(2(nk)1)!!(1+x)21n(1x)21(nk)
所以
y ( n + 1 ) ∣ x = 0 = ( − 1 ) n 2 n ∑ k = 0 n ( n k ) ( 2 k − 1 ) ! ! ( 2 ( n − k ) − 1 ) ! ! y^{(n+1)}|_{x=0}=\frac{(-1)^n}{2^n}\sum_{k=0}^{n}{n\choose k}(2k-1)!!(2(n-k)-1)!! y(n+1)x=0=2n(1)nk=0n(kn)(2k1)!!(2(nk)1)!!
9.

y = arctan ⁡ ( x ) y=\arctan(x) y=arctan(x) 在点 0 0 0 处的各阶导数。

以下用 y 0 ( n ) y_0^{(n)} y0(n) 表示 y y y 在点 0 0 0 处的各阶导数。

写出导数的隐函数表示
( 1 + x 2 ) y ′ = 1 (1+x^2)y^\prime=1 (1+x2)y=1
n ∈ N , n ≥ 2 n\in\mathbb{N},n\ge 2 nN,n2 用高阶导数的莱布尼兹公式得
( 1 + x 2 ) y ( n + 1 ) + 2 n x y ( n ) + n ( n − 1 ) y ( n − 1 ) = 0 (1+x^2)y^{(n+1)}+2nxy^{(n)}+n(n-1)y^{(n-1)}=0 (1+x2)y(n+1)+2nxy(n)+n(n1)y(n1)=0
再令 x = 0 x=0 x=0
y 0 ( n + 1 ) = − n ( n − 1 ) ) y 0 ( n − 1 ) y_0^{(n+1)}=-n(n-1))y_0^{(n-1)} y0(n+1)=n(n1))y0(n1)
再注意到 y 0 ′ = 1 ,   y 0 ′ ′ = 0 y_0^\prime=1,\ y_0^{\prime\prime}=0 y0=1, y0=0,于是有
y 0 n = { ( − 1 ) ( n − 1 ) / 2 ( n − 1 ) ! ( n = 2 k + 1 ) 0 ( n = 2 k ) y_0^{n}=\left\{\begin{aligned} &(-1)^{(n-1)/2}(n-1)!&(n=2k+1)\\ &0&(n=2k) \end{aligned}\right. y0n={(1)(n1)/2(n1)!0(n=2k+1)(n=2k)
10.

a > 0 , b > 0 a>0,b>0 a>0,b>0 a ≠ b a\neq b a=b b ln ⁡ a + a ln ⁡ b = a + b b\ln a+a\ln b=a+b blna+alnb=a+b,求证
2 < 1 a + 1 b < e 2<\frac{1}{a}+\frac{1}{b}<e 2<a1+b1<e
证明

整理条件后得到
1 + ln ⁡ b b = 1 + ln ⁡ a a \frac{1+\ln b}{b}=\frac{1+\ln a}{a} b1+lnb=a1+lna
x = 1 a , y = 1 b \displaystyle x=\frac{1}{a},y=\frac{1}{b} x=a1,y=b1,记函数 f ( x ) = x ( 1 − ln ⁡ x ) f(x)=x(1-\ln x) f(x)=x(1lnx),则条件转化为
f ( x ) = f ( y ) f(x)=f(y) f(x)=f(y)
因为 f ′ ( x ) = − ln ⁡ x f'(x)=-\ln x f(x)=lnx,所以 f ( x ) f(x) f(x) ( 0 , 1 ) (0,1) (0,1) 上递增,在 ( 1 , + ∞ ) (1,+\infty) (1,+) 上递减。

又因为 lim ⁡ x → 0 f ( x ) = 0 , f ( e ) = 0 \displaystyle \lim_{x\to0}f(x)=0,\quad f(e)=0 x0limf(x)=0,f(e)=0,故 x , y ∈ ( 0 , e ) x,y\in(0,e) x,y(0,e)

不妨假设 x < y x<y x<y,则 x ∈ ( 0 , 1 ) , y ∈ ( 1 , e ) x\in(0,1),y\in(1,e) x(0,1),y(1,e)

先证原不等式的右边,这等价于
y < e − x y<e-x y<ex
e − x ∈ ( e − 1 , e ) ⊂ ( 1 , e ) e-x\in(e-1,e)\sub(1,e) ex(e1,e)(1,e) f ( x ) f(x) f(x) ( 1 , e ) (1,e) (1,e) 上递减,于是 y < e − x y<e-x y<ex 等价于
f ( x ) = f ( y ) > f ( e − x ) f(x)=f(y)>f(e-x) f(x)=f(y)>f(ex)
新取一个函数 g ( x ) = f ( x ) − f ( e − x ) g(x)=f(x)-f(e-x) g(x)=f(x)f(ex)

原不等式的右边成立等价于,当 x ∈ ( 0 , 1 ) x\in(0,1) x(0,1) 时有 g ( x ) > 0 g(x)>0 g(x)>0

g ′ ( x ) = f ′ ( x ) + f ′ ( e − x ) = − ln ⁡ ( e − x ) − ln ⁡ x g'(x)=f'(x)+f'(e-x)=-\ln(e-x)-\ln x g(x)=f(x)+f(ex)=ln(ex)lnx

x 0 ∈ ( 0 , 1 ) x_0\in(0,1) x0(0,1) 使得 x 0 ( e − x 0 ) = 1 x_0(e-x_0)=1 x0(ex0)=1

于是 g ′ ( x ) g'(x) g(x) ( 0 , x 0 ) (0,x_0) (0,x0) 上恒正, ( x 0 , 1 ) (x_0,1) (x0,1) 上恒负。

又因为 g ( 0 ) = 0 , g ( 1 ) > 0 g(0)=0,g(1)>0 g(0)=0,g(1)>0,所以 g ( x ) g(x) g(x) ( 0 , 1 ) (0,1) (0,1) 上恒正。

左边的不等式可用类似的方法证出。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
在S-Function中计算函数的导数,可以通过定义S-Function的方法进行实现。以下是一个简单的示例,假设要计算函数y=x^2的导数: 1. 在S-Function的mdlInitializeSizes函数中,定义输入和输出端口: ``` static void mdlInitializeSizes(SimStruct *S) { ssSetNumInputPorts(S, 1); //设置输入端口数量为1 ssSetInputPortWidth(S, 0, 1); //设置输入端口0的宽度为1 ssSetInputPortDirectFeedThrough(S, 0, 1); //设置输入端口0为直接馈送 ssSetNumOutputPorts(S, 1); //设置输出端口数量为1 ssSetOutputPortWidth(S, 0, 1); //设置输出端口0的宽度为1 } ``` 2. 在S-Function的mdlOutputs函数中,计算函数y=x^2及其导数: ``` static void mdlOutputs(SimStruct *S, int_T tid) { real_T *x = ssGetInputPortRealSignal(S,0); //获取输入端口0的值 real_T *y = ssGetOutputPortRealSignal(S,0); //获取输出端口0的值 //计算函数y=x^2及其导数 y[0] = x[0] * x[0]; ssSetOutputPortRealSignal(S, 0, y); ssSetOutputPortRealSignal(S, 1, 2 * x[0]); //计算函数y=x^2的导数 } ``` 在上述代码中,计算函数y=x^2的导数使用了ssSetOutputPortRealSignal函数将结果保存到输出端口1中。 3. 在S-Function的mdlInitializeSampleTimes函数中,设置采样时间: ``` static void mdlInitializeSampleTimes(SimStruct *S) { ssSetSampleTime(S, 0, INHERITED_SAMPLE_TIME); ssSetOffsetTime(S, 0, 0.0); } ``` 在上述代码中,设置采样时间为继承采样时间,即与模型的采样时间相同。 通过以上步骤,就可以在S-Function中计算函数的导数了。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值