数列极限习题选做

本文章记录数列极限的知识框架和习题。

数列极限初步

1.1 数列极限的定义。

1.2 若一个数列有极限,则这个数列的极限唯一。

1.3 lim ⁡ x n = A \lim x_n=A limxn=A​​,则有 lim ⁡ ∣ x n ∣ = ∣ A ∣ \lim |x_n| = |A| limxn=A​​。

1.4 若一个数列有极限,则这个数列有界。

1.5 数列极限的保序性。

1.6 数列极限的四则运算。

1.7 y n y_n yn 有界, lim ⁡ x n = 0 ( or ± ∞ ) \lim x_n=0(\text{or}\pm\infty) limxn=0(or±),则 lim ⁡ x n y n = 0 ( or ± ∞ ) \lim x_ny_n=0(\text{or}\pm\infty) limxnyn=0(or±)

1.8 x n x_n xn​ 收敛于 A A A​ 的充要条件是 x n x_n xn 的任意子列都收敛于 A A A

这个定理常常用来证明一个数列是发散的,因为只需证明这个数列有发散子列即可。

数列极限判断定理

2.1 夹逼定理。

∃ N \exists N N 使 ∀ n > N \forall n>N n>N x n ≤ y n ≤ z n x_n\le y_n \le z_n xnynzn​,且 lim ⁡ x n = lim ⁡ z n = A \lim x_n = \lim z_n=A limxn=limzn=A,则有 lim ⁡ y n = A \lim y_n=A limyn=A

配合上不等式放缩,这个定理可以证明很多数列的极限。

例 2.1.1

a i > 0 ,   i = 1 , . . . , m a_i>0,\ i=1,...,m ai>0, i=1,...,m,求证
lim ⁡ n → ∞ a 1 + . . . + a m n = max ⁡ 1 ≤ i ≤ m { a i } \lim_{n\to\infty}\sqrt[n]{a_1+...+a_m}=\max_{1\le i\le m}\{a_i\} nlimna1+...+am =1immax{ai}

2.2 单调有界收敛定理。

∃ N \exists N N​ 使 ∀ n > N \forall n>N n>N​ 有 x n ≤ x n + 1 x_n\le x_{n+1} xnxn+1(或 x n ≥ x n + 1 x_n\ge x_{n+1} xnxn+1),且 x n x_n xn 有界,则 lim ⁡ x n \lim x_n limxn 存在。

例 2.2.1

a > 0 ,   x 1 = a ,   x n + 1 = a + x n ,   n ∈ N + a>0,\ x_1=\sqrt{a},\ x_{n+1}=\sqrt{a+x_{n}},\ n\in\mathbb{N}^+ a>0, x1=a , xn+1=a+xn , nN+,求 x n x_n xn 极限。

证明

首先 x n x_n xn 相当于 x n + 1 x_{n+1} xn+1 去掉一个最里边的 a \sqrt{a} a 所以有 x n < x n + 1 x_n<x_{n+1} xn<xn+1,所以 x n x_n xn 严格递增。

注意到 x n 2 = a + x n − 1 < a + x n x_n^2=a+x_{n-1}< a+x_n xn2=a+xn1<a+xn

再考虑到 x n > a x_n>\sqrt{a} xn>a ,所以 x n < a x n + 1 < a + 1 x_n<\frac{a}{x_n}+1<\sqrt{a}+1 xn<xna+1<a +1,于是 x n x_n xn 有界,所以 x n x_n xn 有极限,不妨设它为 x x x

在递推式两边取极限得 x = a + x x=\sqrt{a+x} x=a+x ,解得
x = 1 + 1 + 4 a 2 x=\frac{1+\sqrt{1+4a}}{2} x=21+1+4a

2.3 施笃兹定理(Stoltz)

设有两个数列 x n x_n xn y n y_n yn 满足

(1)数列 { Δ x n Δ y n } \{\frac{\Delta x_n}{\Delta y_n}\} {ΔynΔxn} 收敛(或趋向于 ± ∞ \pm \infty ±)。

(2) y n y_n yn 严格单调,且 lim ⁡ y n = + ∞ \lim y_n=+\infty limyn=+​。

对于数列来说,它的差分定义为 Δ x n = x n + 1 − x n \Delta x_n=x_{n+1}-x_n Δxn=xn+1xn

则有
lim ⁡ n → ∞ x n y n = lim ⁡ n → ∞ Δ x n Δ y n \lim_{n\to\infty}\frac{x_n}{y_n}=\lim_{n\to\infty}\frac{\Delta x_n}{\Delta y_n} nlimynxn=nlimΔynΔxn

例 2.3.1

lim ⁡ a n = A \lim a_n=A liman=A,求证
lim ⁡ n → ∞ a 1 + . . . + a n n = A \lim_{n\to\infty}\frac{a_1+...+a_n}{n}=A nlimna1+...+an=A
这是个很常用的命题,值得记忆。

证明

应用施笃兹定理即得。

上下极限与柯西收敛原则

3.1

设有两个数列 x n x_n xn y n y_n yn 满足 ∃ N \exists N N 使当 n > N n>N n>N x n ≤ y n x_n\le y_n xnyn​,则有
lim ⁡ n → ∞ x n ‾ ≤ lim ⁡ n → ∞ y n ‾ lim ⁡ n → ∞ x n ‾ ≤ lim ⁡ n → ∞ y n ‾ \lim_{n\to\infty}\underline{x_n}\le\lim_{n\to\infty}\underline{y_n}\\ \lim_{n\to\infty}\overline{x_n}\le\lim_{n\to\infty}\overline{y_n}\\ nlimxnnlimynnlimxnnlimyn

3.2

设有两个数列 x n x_n xn y n y_n yn,则有
x n ‾ + y n ‾ ≤ x n + y n ‾ ≤ x n ‾ + y n ‾ x n ‾ + y n ‾ ≤ x n + y n ‾ ≤ x n ‾ + y n ‾ \underline{x_n}+\underline{y_n}\le\underline{x_n+y_n}\le\underline{x_n}+\overline{y_n}\\ \underline{x_n}+\overline{y_n}\le\overline{x_n+y_n}\le\overline{x_n}+\overline{y_n}\\ xn+ynxn+ynxn+ynxn+ynxn+ynxn+yn
若加上条件 x n ≥ 0 ,   y n ≥ 0 x_n\ge0,\ y_n\ge0 xn0, yn0​,则有
x n ‾ ⋅ y n ‾ ≤ x n ⋅ y n ‾ ≤ x n ‾ ⋅ y n ‾ x n ‾ ⋅ y n ‾ ≤ x n ⋅ y n ‾ ≤ x n ‾ ⋅ y n ‾ \underline{x_n}\cdot\underline{y_n}\le\underline{x_n\cdot y_n}\le\underline{x_n}\cdot\overline{y_n}\\ \underline{x_n}\cdot\overline{y_n}\le\overline{x_n\cdot y_n}\le\overline{x_n}\cdot\overline{y_n}\\ xnynxnynxnynxnynxnynxnyn

3.3 上下极限存在的充要条件

3.4 有上界的数列存在上极限,有下界的数列存在下极限。

3.5 有界数列收敛的充要条件是上下极限相等

3.6 柯西收敛原理

柯西收敛原理在证明数列收敛或发散当中有极为广泛的应用。

例 3.6.1

求证调和级数发散,即
lim ⁡ n → ∞ ∑ i = 1 n 1 i = + ∞ \lim_{n\to\infty}\sum_{i=1}^{n}\frac{1}{i}=+\infty nlimi=1ni1=+

证明


x n = ∑ i = 1 n 1 i x_n=\sum_{i=1}^{n}\frac{1}{i} xn=i=1ni1

对于 ε 0 = 1 2 \varepsilon_0 = \frac{1}{2} ε0=21​,无论 N N N​ 取和值,取 n 0 = N + 1 ,   m 0 = 2 n 0 n_0=N+1,\ m_0=2n_0 n0=N+1, m0=2n0​​,则有
∣ x m 0 − x n 0 ∣ > n 0 ⋅ 1 2 n 0 = ε 0 |x_{m_0}-x_{n_0}|>n_0\cdot\frac{1}{2n_0}=\varepsilon_0 xm0xn0>n02n01=ε0
由柯西收敛原则可知调和级数发散。

习题选做

1.


lim ⁡ n + 1 − n n + 2 − n \lim \frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n+2}-\sqrt{n}} limn+2 n n+1 n

关键需要的是这一公式
a − b = a − b a + b \sqrt{a}-\sqrt{b}=\frac{a-b}{\sqrt{a}+\sqrt{b}} a b =a +b ab

2.

求证
lim ⁡ n → ∞ n s a n = 0 ( s > 0 , a > 1 ) \lim_{n\to\infty}\frac{n^s}{a^n}=0\quad(s>0,a>1) nlimanns=0(s>0,a>1)

证明

因为 a > 1 a>1 a>1 故可设 a = 1 + δ ,   ( δ > 0 ) a=1+\delta,\ (\delta >0) a=1+δ, (δ>0),这是分析学中一个重要的技巧,值得注意。

则有
a n = ( 1 + δ ) n = ∑ i = 0 n ( n i ) δ i a^n=(1+\delta)^n=\sum_{i=0}^{n}{n\choose i}\delta^i an=(1+δ)n=i=0n(in)δi
n > s n>s n>s 时,取 s < m ≥ n ,   ( m ∈ N + ) s<m\ge n,\ (m\in\mathbb{N}^+) s<mn, (mN+),于是有
a n ≥ ∑ i = 0 m ( n i ) δ i > ( n m ) δ = n m ‾ m ! δ a^n\ge\sum_{i=0}^{m}{n\choose i}\delta^i>{n \choose m}\delta=\frac{n^{\underline m}}{m!}\delta ani=0m(in)δi>(mn)δ=m!nmδ
于是有
n s a n < n s n m ‾ ⋅ m ! δ lim ⁡ n → ∞ n s a n ≤ n s n m ‾ ⋅ m ! δ = 0 \frac{n^s}{a^n}<\frac{n^s}{n^{\underline m}}\cdot\frac{m!}{\delta}\\ \lim_{n\to\infty}\frac{n^s}{a^n}\le\frac{n^s}{n^{\underline m}}\cdot\frac{m!}{\delta}=0\\ anns<nmnsδm!nlimannsnmnsδm!=0
由夹逼定理即得。

3.

求证
lim ⁡ n → ∞ n n = 1 \lim_{n\to\infty}\sqrt[n]{n}=1 nlimnn =1

证明

x n ≥ 0 x_n\ge0 xn0,首先证明
x n n ≤ 1 + x n n \sqrt[n]{x_n}\le1+\frac{x_n}{n} nxn 1+nxn
根据二项式定理有
x n = ( ( x n n − 1 ) + 1 ) n ≥ n ( x n n − 1 ) x_n=((\sqrt[n]{x_n}-1)+1)^n\ge n(\sqrt[n]{x_n}-1)\\ xn=((nxn 1)+1)nn(nxn 1)
整理即可得。

x n = n x_n=\sqrt{n} xn=n ,于是有
n 2 n ≤ 1 + 1 n \sqrt[2n]{n}\le 1+\frac{1}{\sqrt{n}} 2nn 1+n 1
所以
lim ⁡ n → ∞ n n = lim ⁡ n → ∞ n 2 n = 1 \lim_{n\to\infty}\sqrt[n]{n}=\lim_{n\to\infty}\sqrt[2n]{n}=1 nlimnn =nlim2nn =1

4.

设数列 { x n } \{x_n\} {xn} 收敛于 A A A { x n ′ } \{x_n^{\prime}\} {xn} { x n } \{x_n\} {xn} 的任意重排数列,求证 lim ⁡ x n ′ = A \lim x_n^{\prime} = A limxn=A

证明

由重排可知 ∃ \exists 双射 f ( n ) f(n) f(n) ∀ n \forall n n x n = x f ( n ) ′ x_{n}=x_{f(n)}^{\prime} xn=xf(n)

∀ ε > 0 \forall \varepsilon>0 ε>0 ∃ N ∈ N + \exists N\in\mathbb{N}^+ NN+,使当 n > N n>N n>N 时,有
∣ x n − A ∣ < ε |x_n-A|<\varepsilon xnA<ε
K = max ⁡ { f ( i ) ∣ 1 ≤ i ≤ N + 1 } K=\max\{f(i)|1\le i\le N+1\} K=max{f(i)1iN+1},则 ∀ k > K \forall k>K k>K f − ( k ) > N f^-(k)>N f(k)>N,于是
∣ x k ′ − A ∣ = ∣ x f − ( k ) − A ∣ < ε |x^{\prime}_k-A|=|x_{f^-(k)}-A|<\varepsilon xkA=xf(k)A<ε

5.


lim ⁡ n → ∞ ( 1 + 1 n + 1 n 2 ) n \lim_{n\to\infty}(1+\frac{1}{n}+\frac{1}{n^2})^n nlim(1+n1+n21)n

O r i g i n = lim ⁡ ( ( 1 + n + 1 n 2 ) n 2 n + 1 ) n + 1 n = lim ⁡ ( 1 + n + 1 n 2 ) n 2 n + 1 = e \begin{aligned} Origin&=\lim\left((1+\frac{n+1}{n^2})^{\frac{n^2}{n+1}}\right)^{\frac{n+1}n}\\ &=\lim(1+\frac{n+1}{n^2})^{\frac{n^2}{n+1}}\\ &=e \end{aligned} Origin=lim((1+n2n+1)n+1n2)nn+1=lim(1+n2n+1)n+1n2=e

4.6 设有单调数列 { x n } \{x_n\} {xn} 且存在收敛子序列 x n k x_{n_k} xnk,证明 lim ⁡ n → ∞ x n \displaystyle \lim_{n\to\infty}x_n nlimxn​ 存在。

证明

略。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值