tensorflow训练神经网络时loss出现nan的问题

本文探讨了在使用TensorFlow进行神经网络训练时遇到Loss值变为NaN的情况,指出这通常是因为学习率设置过高导致。通过调整优化器的学习率参数,可以有效避免这一问题,使训练过程稳定并得到合理的结果。

tensorflow训练神经网络时loss出现nan的问题

一般情况下原因是由于优化器上的学习比率learning_rate定义值太大,如:

train_step = tf.compat.v1.train.GradientDescentOptimizer(0.1).minimize(loss) 

运行打印loss:

for i in range(100):
    sess.run(train_step,feed_dict={xs:x_data,ys:y_data})
    #这里我们用全部数据来进行train,其实有个forcast GDO只用一部分数据进行训练,能使训练效率更高
    if i % 50:
        print('实际偏差率:',sess.run(loss,feed_dict={xs:x_data,ys:y_data})[0])

其结果为:

实际偏差率: 9477596000000000.0
实际偏差率: inf
实际偏差率: nan
实际偏差率: nan
实际偏差率: nan
实际偏差率: nan
实际偏差率: nan
实际偏差率: nan
......
实际偏差率: nan

将其中learning_rate的值改为0.01或者更小:

train_step = tf.compat.v1.train.GradientDescentOptimizer(0.01).minimize(loss) 

结果为:

实际偏差率: 5.9452715
实际偏差率: 5.5919566
实际偏差率: 5.1778126
实际偏差率: 0.023199111
实际偏差率: 0.26209167
实际偏差率: 0.41470975
实际偏差率: 0.47333607
实际偏差率: 0.48828265
实际偏差率: 0.48628327
实际偏差率: 0.47839066
实际偏差率: 0.46885166
实际偏差率: 0.4591693
.......
实际偏差率: 0.014343787
### RNN 训练过程中损失值为 NaN 的解决方案 在循环神经网络(RNN)训练期间遇到损失值变为NaN的情况是一个常见问题。当模型学习过程中的某些输入导致错误计算,可能会出现这种情况[^1]。 #### 归一化数据处理 确保提供给模型的数据已经过适当预处理和归一化非常重要。对于像信息熵这样的特定层来说,如果接收到未经归一化的数值,则可能引发不稳定的梯度更新从而造成NaN的结果[^2]。 ```python from sklearn.preprocessing import MinMaxScaler scaler = MinMaxScaler() X_train_scaled = scaler.fit_transform(X_train) ``` #### 使用批量标准化(Batch Normalization, BN) 为了稳定深层架构下的内部协变量偏移问题,在Keras或TensorFlow框架下可以考虑引入BN层来帮助缓解这一状况: - **Keras实现** ```python from keras.layers.normalization import BatchNormalization model.add(LSTM(50)) model.add(BatchNormalization()) ``` - **TensorFlow实现** ```python tf.keras.layers.BatchNormalization(axis=-1, momentum=0.99, epsilon=0.001)(lstm_output) ``` 通过上述方式可以在一定程度上防止因激活函数饱和而导致的梯度过大或者消失等问题的发生[^3]。 #### 调整优化算法及其参数配置 选择合适的优化器以及合理设置其超参也是减少NaN产生的有效手段之一。Adam、RMSprop等自适应型优化方法通常表现良好;同注意控制初始学习率不要过高以免引起剧烈波动。 ```python optimizer = Adam(lr=0.001, beta_1=0.9, beta_2=0.999, amsgrad=False) model.compile(loss='categorical_crossentropy', optimizer=optimizer) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值