1023 组个最小数

126 篇文章 0 订阅
36 篇文章 0 订阅

描述

给定数字 0-9 各若干个。你可以以任意顺序排列这些数字,但必须全部使用。目标是使得最后得到的数尽可能小(注意 0 不能做首位)。例如:给定两个 0,两个 1,三个 5,一个 8,我们得到的最小的数就是 10015558。

现给定数字,请编写程序输出能够组成的最小的数。

输入格式:

输入在一行中给出 10 个非负整数,顺序表示我们拥有数字 0、数字 1、……数字 9 的个数。整数间用一个空格分隔。10 个数字的总个数不超过 50,且至少拥有 1 个非 0 的数字。

输出格式:

在一行中输出能够组成的最小的数。

输入样例:

2 2 0 0 0 3 0 0 1 0

输出样例:

10015558

idea

  • 输入的为数字0~9的个数,输出可以组成的最小数
  • 首位非0的最小数,其余是选当前的最小数

solution

#include <stdio.h>
int main(){
	int a[10] = {0};
	for(int i = 0; i < 10; i++)
		scanf("%d", a + i);
	for(int i = 1; i < 10; i++){
		if(a[i] > 0){
			printf("%d", i);
			a[i]--;
			break;
		}
	}	
	for(int i = 0; i < 10; i++){
		while(a[i] > 0){
			printf("%d", i);
			a[i]--;
		}
	}
	return 0;
} 
### 回答1: 这个二进制表示的十进制是:-4.229400390625e-308 其中,double类型据在内存中存储的是64位(8个字节)的二进制,通常使用IEEE 754浮点标准来表示。在这种标准下,double类型据的第一位(最高位)表示符号位,如果是0表示正,如果是1表示负。接下来的11位表示指,最后的52位表示小部分。 在这个例子中,符号位为1,表示这个为负。指部分为010001100100,对应的十进制是1100,用二进制补码表示为11011,即为-3。小部分为1111100011011110111110001000000010001011000000100100,对应的十进制是0.229400390625。所以这个double类型据的值为:(-1)^1 * 2^(-3) * 0.229400390625 = -4.229400390625e-308。 ### 回答2: 根据内存中存储的二进制,按照IEEE 754标准,我们可以将其解析为一个双精度浮点。 首先,根据双精度浮点的规则,这个的第一个位是符号位,0表示正。 接下来的11位是指位,我们可以将其转换为十进制,得到3274。 最后的52位是尾位,我们将其转换为一个小,具体计算如下: 1.00001100100111110001101111011111000100000001000101100 将小点移动至第一个非零位之前,即52位后面的0后面。 得到:0.0000000100001100100111110001101111011111000100000001000101100 最后,将指位与尾位进行组合计算,得到最终的十进制值: 0.0000000100001100100111110001101111011111000100000001000101100 * 2^3274 根据以上计算,该double值转换为十进制表示为约为: 0.1043382670535058301108823223033514090146784754638671875 * 10^990 ### 回答3: 给定的二进制为0100011001001111100011011110111110001000000010001011000000100100。 根据IEEE 754浮点标准,double类型的值在内存中的存储由3个部分组成:符号位、阶码和尾。 由于给定的二进制为64位,可以确定符号位为0,表示正。 接下来需要确定阶码和尾。 根据IEEE 754双精度浮点标准,双精度浮点的格式为:符号位(1位)+指位(11位)+尾位(52位)。 从给定的二进制可以看到,前11位为01000110010,这是指位。 接下来的52位为1111100011011110111110001000000010001011000000100100,这是尾位。 将指位转换为十进制可以得到:01000110010 = 898 为了防止歧义,我们需要应用偏置值来计算真实的指。对于11位的指位,偏置值为1023。 所以实际的指值为:898 - 1023 = -125 根据IEEE 754双精度浮点的规则,指取值范围为-1022到1023。由于计算结果-125在这个范围内,所以该值是有效的。 最后,将尾位转换为十进制,可以得到小部分:0.1111100011011110111110001000000010001011000000100100。 将指值为-125和小部分的值相乘,同时根据符号位,可以得到最终的十进制表示为: (-1) ^ 0 * 2 ^ (-125) * (1 + 0.1111100011011110111110001000000010001011000000100100) 计算得出结果为:3.141592653589793 因此,给定的double值在内存中的存储用十进制表示为3.141592653589793。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值