CINTA7

CINTA 七

运用CRT求解:

x ≡ 8 ( m o d   11 ) x ≡ 3 ( m o d   19 ) x = a q q − 1 + b p p − 1 1 0 19 0 1 11 1 − 1 8 − 1 2 3 3 − 5 2 − 4 7 1 q − 1 = 7 , p − 1 = 7. x = 41 ( m o d   p q ) x\equiv8(mod\ 11)\\ x\equiv3(mod\ 19)\\ x=aqq^{-1}+bpp^{-1}\\ 1\qquad0\qquad19\\ 0\qquad1\qquad11\\ 1\qquad-1\qquad8\\ -1\qquad2\qquad3\\ 3\qquad-5\qquad2\\ -4\qquad7\qquad1\\ q^{-1}=7,p^{-1}=7.\\ x=41(mod\ pq) x8(mod 11)x3(mod 19)x=aqq1+bpp110190111118123352471q1=7,p1=7.x=41(mod pq)

2

x ≡ 1 ( m o d   5 ) x ≡ 2 ( m o d   7 ) x ≡ 3 ( m o d   9 ) x ≡ 4 ( m o d   11 ) x = ∏ i = 0 n − 1 a i b i b i − 1 b 1 = 7 ∗ 9 ∗ 11 = 693 b 2 = 495 b 3 = 385 b 4 = 315 b 1 − 1 = 2 , b 2 − 1 = 3 , b 1 − 1 = 4 , b 1 − 1 = 8 M = 3465 x = 1731 x\equiv1(mod\ 5)\\ x\equiv2(mod\ 7)\\ x\equiv3(mod\ 9)\\ x\equiv4(mod\ 11)\\ x=\prod_{i=0}^{n-1} a_i b_i b_i^{-1}\\ b_1=7*9*11=693\\b_2=495\\b_3=385\\b_4=315\\ b_1^{-1}=2,b_2^{-1}=3,b_1^{-1}=4,b_1^{-1}=8\\ M=3465\\ x=1731\\ x1(mod 5)x2(mod 7)x3(mod 9)x4(mod 11)x=i=0n1aibibi1b1=7911=693b2=495b3=385b4=315b11=2,b21=3,b11=4,b11=8M=3465x=1731

3手动计算

200 0 2019 ( m o d   221 ) n = 221 = 17 ∗ 13 2000 ↔ ( 11 , 11 ) x ≡ 11 ( m o d   17 ) x ≡ 11 ( m o d   13 ) x = a q q − 1 + b p p − 1 q − 1 = 10 , p − 1 = 4. x = 11 2000^{2019}(mod\ 221)\\ n=221=17*13\\ 2000\leftrightarrow(11,11)\\ x\equiv11(mod\ 17)\\ x\equiv11(mod\ 13)\\ x=aqq^{-1}+bpp^{-1}\\ q^{-1}=10,p^{-1}=4.\\ x=11 20002019(mod 221)n=221=17132000(11,11)x11(mod 17)x11(mod 13)x=aqq1+bpp1q1=10,p1=4.x=11

9使用第一同构定理证明定理10.4中定义的映射Φ的单射性


Z n 的 单 位 元 为 0 从 Z n 到 Z p Z q 的 单 位 元 为 ( 0 , 0 ) , K = k e r ( ϕ ) = { 0 } 满 足 K 为 Z n 的 正 规 子 群 则 ∃ η   : Z n / K ↦ ϕ ( Z n ) ∴ ϕ : Z n ↦ Z n / K , 是 标 准 同 态 易 得 Z n / K , Z n , 是 相 同 的 阶 ∴ ϕ 是 单 射 ψ = η ϕ 所 以 ψ 是 单 射 Z_n的单位元为0\\ 从Z_n到Z_pZ_q的单位元为(0,0),\\ K=ker(\phi)=\{0\}满足K为Z_n的正规子群\\ 则\exist \eta\ : Z_n/K\mapsto\phi(Z_n)\\ \therefore \phi: Z_n\mapsto {Z_n}/{K},是标准同态\\ 易得 {Z_n}/{K},Z_n,是相同的阶\\ \therefore \phi是单射\\ \psi=\eta\phi\\ 所以\psi是单射 Zn0ZnZpZq00K=ker(ϕ)={0}KZnη :Zn/Kϕ(Zn)ϕ:ZnZn/K,Zn/K,Zn,ϕψ=ηϕψ

10完成10.4的证明

证 明 Z n ∗ 与 Z p ∗ × Z q ∗ 同 构 定 义 从 Z n ∗ 到 Z p ∗ × Z q ∗ 的 映 射 ψ 为 : ψ ( x ) = ( [ x   m o d   p ] , [ x   m o d   q ] ) 要 证 明 映 射 ψ 是 一 种 双 射 , 即 证 明 ψ 是 满 射 且 单 射 。 Z n ∗ 到 Z p ∗ × Z q ∗ , 显 然 是 满 射 Z n ∗ 到 Z p ∗ × Z q ∗ 是 单 射 , 证 明 如 第 九 题 证 明 ψ 保 持 群 操 作 : ψ ( a ⋅ b ) = ( [ ( a ⋅ b ) m o d   p ] , [ ( a ⋅ b ) m o d   q ] ) = ( [ ( a   m o d   p ) ] , [ ( a   m o d   q ) ] ) × ( [ ( b   m o d   p ) ] , [ ( b   m o d   q ) ] ) = ψ ( a ) × ψ ( b ) 所 以 综 上 所 述 , 为 同 构 。 证明Z_n^*与Z_p^*\times Z_q^{*}同构\\ 定义从Z_n^*到Z_p^*\times Z_q^{*}的映射\psi为:\\ \psi(x)=([x\ mod\ p],[x\ mod\ q])\\ 要证明映射\psi 是一种双射,即证明\psi是满射且单射。\\ Z_n^*到Z_p^*\times Z_q^{*},显然是满射\\ Z_n^*到Z_p^*\times Z_q^{*}是单射,证明如第九题\\ 证明\psi 保持群操作:\\ \psi(a\cdot b)=([(a\cdot b)mod\ p],[(a\cdot b)mod\ q])\\ =([(a\ mod\ p)],[(a\ mod\ q)])\times([(b\ mod\ p)],[(b\ mod\ q)])\\ =\psi(a)\times\psi(b)\\ 所以综上所述,为同构。 ZnZp×ZqZnZp×Zqψψ(x)=([x mod p],[x mod q])ψψZnZp×ZqZnZp×Zqψψ(ab)=([(ab)mod p],[(ab)mod q])=([(a mod p)],[(a mod q)])×([(b mod p)],[(b mod q)])=ψ(a)×ψ(b)

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值