CINTA(六)

CINTA(六)

4根据命题9.5 , H是G的正规子群当且仅当对任意 g ∈ G , 有 g H g − 1 ⊂ H 。 实 际 上 , 后 置 条 件 可 放 松 到 只 要 求 给 出 有 g H g − 1 ⊂ H g \in G,有gHg^{-1} \subset H 。 \\实际上,后置条件可放松到只要求给出有\\ gHg^{-1} \subset H gGgHg1HgHg1H证明

证:

H是G的正规子集,即对任意 $ g \in G , 有 ,有 , g H = H g $ .
∵ g H g − 1 = H ∴ 根 据 消 去 律 , g h = h ′ g , 可 得 任 意 h ∈ H 存 在 h ′ 使 得 g h = h ′ g g H ⊂ H g ∴ 同 理 可 得 H g ⊂ g H ∴ g H = H g \because gHg^{-1}=H \\ \therefore 根据消去律,gh=h'g,可得任意h\in H 存在h'使得gh=h'g \\ gH\subset Hg\\ \therefore 同理可得Hg\sub gH\\ \therefore gH=Hg gHg1=Hgh=hg,hHh使gh=hggHHgHggHgH=Hg

5定义映射 ϕ : G ↦ G 为 : g ↦ g 2 . 请 证 明 ϕ 是 一 种 群 同 态 当 且 仅 当 G 是 阿 贝 尔 群 \phi :G \mapsto G 为:g\mapsto g^2 . \\请证明\phi 是一种群同态当且仅当G是阿贝尔群 ϕ:GGgg2.ϕG

证:
如 果 ϕ 是 一 种 群 同 态 , ϕ ( g 1 g 2 ) = ϕ ( g 1 ) ϕ ( g 2 ) = g 1 2 g 2 2 ϕ ( g 2 g 1 ) = ϕ ( g 2 ) ϕ ( g 1 ) = g 2 2 g 1 2 因 为 g 1 2 g 2 2 = g 2 2 g 1 2 所 以 ϕ 是 群 同 态 的 话 , 则 G 是 阿 贝 尔 群 − − − − − − − − − − 如 果 G 是 阿 贝 尔 群 , 则 ϕ ( g 1 g 2 ) = g 1 2 g 2 2 = ϕ ( g 1 ) ϕ ( g 2 ) ϕ 是 群 同 态 如果\phi 是一种群同态,\\ \phi(g_1g_2)=\phi(g_1)\phi(g_2)=g_1^2g_2^2\\ \phi(g_2g_1)=\phi(g_2)\phi(g_1)=g_2^2g_1^2\\ 因为g_1^2g_2^2=g_2^2g_1^2\\ 所以\phi 是群同态的话,则G是阿贝尔群\\ ----------\\ 如果G是阿贝尔群,\\ 则\phi(g_1g_2)=g_1^2g_2^2 =\phi(g_1)\phi(g_2)\\ \phi 是群同态 ϕϕ(g1g2)=ϕ(g1)ϕ(g2)=g12g22ϕ(g2g1)=ϕ(g2)ϕ(g1)=g22g12g12g22=g22g12ϕGGϕ(g1g2)=g12g22=ϕ(g1)ϕ(g2)ϕ

6.设 ϕ : G ↦ H 是 一 种 群 同 态 , 请 证 明 : 如 果 G 是 循 环 群 , 则 ϕ ( G ) 也 是 循 环 群 ; 如 果 G 是 交 换 群 , 则 ϕ ( G ) 也 是 交 换 群 \phi :G\mapsto H是一种群同态,\\请证明:如果G是循环群,则\phi(G)也是循环群;\\如果G是交换群,则\phi(G) 也是交换群 ϕ:GHGϕ(G)Gϕ(G)

证:
∀ g ∈ G , 都 可 以 是 G 的 生 成 元 。 ∀ g 1 , ∃ g 2 使 得 g 1 = g 2 n ∀ g 1 , ∃ g 2 , ϕ ( g 1 ) = ϕ ( g 2 n ) = ϕ ( g 2 ) ∘ ϕ ( g 2 ) ∘ . . . = ϕ ( g 2 ) n ∴ ∀ g ∈ H , 都 可 以 是 H 的 生 成 元 的 n 阶 生 成 − − − − − − − − − − ∀ a , b ∈ G , ϕ ( a ⋅ b ) = ϕ ( a ) ∘ ϕ ( b ) = ϕ ( b ⋅ a ) = ϕ ( b ) ∘ ϕ ( a ) 所 以 G 是 交 换 群 , 则 H 也 是 交 换 群 \forall g\in G,都可以是G的生成元。\\ \forall g_1,\exist g_2 使得g_1=g_2^n\\ \forall g_1,\exist g_2 ,\phi(g_1)=\phi(g_2^n)=\phi(g_2)\circ \phi(g_2)\circ...=\phi(g_2)^n\\ \therefore \forall g\in H,都可以是H的生成元的n阶生成\\ ----------\\ \forall a,b\in G,\\ \phi(a\cdot b)=\phi(a)\circ\phi(b)=\phi(b\cdot a)=\phi(b)\circ\phi(a)\\ 所以G是交换群,则H也是交换群 gG,Gg1,g2使g1=g2ng1,g2,ϕ(g1)=ϕ(g2n)=ϕ(g2)ϕ(g2)...=ϕ(g2)ngH,Hna,bG,ϕ(ab)=ϕ(a)ϕ(b)=ϕ(ba)=ϕ(b)ϕ(a)GH

7证明:如果H是群G上指标为2的子群,则H是G的正规子群

证 : 如 果 指 标 为 2 , H 在 G 上 不 同 的 左 陪 集 为 两 个 则 任 意 g ∈ G , 若 g ∈ H , g H = H g 。 若 g ∈ G , g ∉ H , 则 g H 为 除 H 外 的 一 个 陪 集 , g H = H ′ , H g 同 理 , H g = H ′ 。 可 得 g H = H g 则 H 是 G 的 正 规 子 群 。 证:\\ 如果指标为2,H在G上不同的左陪集为两个\\ 则任意g\in G,若g\in H, gH = Hg 。\\ 若g\in G,g\notin H,则 gH为除H外的一个陪集,gH=H',Hg同理,Hg=H'。\\ 可得gH=Hg\\ 则H是G的正规子群。 2HGgG,gH,gH=HggG,g/H,gHHgH=HHgHg=HgH=HgHG

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
大模型安全评估测试题大模型安全评估测试题关键词库生成内容测试题库应拒答测试题库非拒答测试题大模型安全评估测试题大模型安全评估测试题关键词库生成内容测试题库应拒答测试题库非拒答测试题大模型安全评估测试题大模型安全评估测试题关键词库生成内容测试题库应拒答测试题库非拒答测试题大模型安全评估测试题大模型安全评估测试题关键词库生成内容测试题库应拒答测试题库非拒答测试题大模型安全评估测试题大模型安全评估测试题关键词库生成内容测试题库应拒答测试题库非拒答测试题大模型安全评估测试题大模型安全评估测试题关键词库生成内容测试题库应拒答测试题库非拒答测试题大模型安全评估测试题大模型安全评估测试题关键词库生成内容测试题库应拒答测试题库非拒答测试题大模型安全评估测试题大模型安全评估测试题关键词库生成内容测试题库应拒答测试题库非拒答测试题大模型安全评估测试题大模型安全评估测试题关键词库生成内容测试题库应拒答测试题库非拒答测试题大模型安全评估测试题大模型安全评估测试题关键词库生成内容测试题库应拒答测试题库非拒答测试题大模型安全评估测试题大模型安全评估测试题关键词库生成内容测试题库应拒答测试题库非拒答测试题大模型安全
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值