CINTA8

CINTA(8)

设 p 是奇素数,请证明 Z p ∗ 的所有生成元都是模 p 的二次非剩余。 使用抽象代数的语言重新证明欧拉准则。 设p是奇素数,请证明\Z_p^*的所有生成元都是模p的二次非剩余。\\ 使用抽象代数的语言重新证明欧拉准则。 p是奇素数,请证明Zp的所有生成元都是模p的二次非剩余。使用抽象代数的语言重新证明欧拉准则。

1.

设 a 为生成元,则 a p − 1 ≡ 1 ( m o d   p ) , 且 p − 1 是使 a n ≡ 1 的最小值 若满足二次剩余,则依据欧拉准则可得, a p − 1 2 ≡ 1 ( m o d   p ) ∵ p − 1 2 < p − 1 , 矛盾,可以证出 Z p ∗ 的所有生成元都是模 p 的二次非剩余。 设a为生成元,则a^{p-1}\equiv1(mod\ p ),且p-1是使a^n\equiv1的最小值\\ 若满足二次剩余,则依据欧拉准则可得,a^{\frac{p-1}2}\equiv1(mod\ p)\\ \because \frac{p-1}2 <p-1,矛盾,可以证出\Z_p^*的所有生成元都是模p的二次非剩余。 a为生成元,则ap11(mod p),p1是使an1的最小值若满足二次剩余,则依据欧拉准则可得,a2p11(mod p)2p1<p1,矛盾,可以证出Zp的所有生成元都是模p的二次非剩余。

2

有映射 ϕ : ,对 ∀ a ∈ Z p ∗ , ϕ ( a ) = a p − 1 2 。 ϕ ( a ⋅ b ) = ( a ⋅ b ) p − 1 2 = a p − 1 2 b p − 1 2 = ϕ ( a ) ⋅ ϕ ( b ) , ϕ 是群同态 而且 ψ 是满同态, ψ ( a ) = ( a p ) , 下证 K e r ψ = K e r ϕ K e r ψ ⊂ K e r ϕ : ψ ( a ) = 1 , 即存在 x ∈ Z 使 a ≡ x 2 ( m o d   p ), 根据费尔马小定理可得: ( x ) p − 1 ≡ 1 ( m o d   p ) ( x 2 ) p − 1 2 ≡ a p − 1 2 ( m o d   p ) 所以 a p − 1 2 ≡ 1 ≡ ( a q ) ( m o d   p ) K e r ϕ ⊂ K e r ψ : 取 a ∈ K e r ϕ , p h i ( a ) = 1 , 则 a p − 1 2 ≡ 1 ( m o d   p ) a p + 1 2 ≡ a ( m o d   p ) a ( p + 1 4 ) 2 ≡ a ( m o d   p ) 则 a 是 m o d p 的二次剩余,可得勒让德符号为 1 , ψ ( a ) = 1 , K e r ϕ ⊂ K e r ψ , K e r ψ = K e r ϕ ,证毕 有映射 \phi:,对\forall a\in Z_p^*,\phi(a)=a^\frac{p-1}{2}。\\ \phi(a\cdot b)=(a\cdot b)^\frac{p-1}{2}=a^\frac{p-1}{2}b^\frac{p-1}{2}=\phi(a)·\phi(b),\phi是群同态\\ 而且\psi是满同态,\psi(a)=(\frac ap ),下证Ker\psi=Ker\phi\\ Ker \psi\subset Ker \phi:\psi(a)=1,即存在x\in Z使a\equiv x^2(mod\ p),\\ 根据费尔马小定理可得:(x)^{p-1}\equiv1(mod\ p)\\ (x^2)^{\frac{p-1}{2}}\equiv a^{\frac{p-1}{2}}(mod \ p)\\ 所以a^{\frac{p-1}{2}}\equiv1\equiv(\frac aq)(mod \ p)\\ Ker\phi\subset Ker\psi:取a\in Ker\phi,phi(a)=1,则 a^{\frac{p-1}{2}}\equiv 1(mod \ p)\\ a^{\frac {p+1}{2}}\equiv a(mod\ p)\\ a^{(\frac {p+1}{4})^2}\equiv a(mod\ p)\\ 则a是modp的二次剩余,可得勒让德符号为1,\psi(a)=1,Ker\phi\subset Ker\psi,\\ Ker\psi=Ker\phi,证毕 有映射ϕ:,对aZp,ϕ(a)=a2p1ϕ(ab)=(ab)2p1=a2p1b2p1=ϕ(a)ϕ(b),ϕ是群同态而且ψ是满同态,ψ(a)=(pa),下证Kerψ=KerϕKerψKerϕ:ψ(a)=1,即存在xZ使ax2mod p),根据费尔马小定理可得:(x)p11(mod p)(x2)2p1a2p1(mod p)所以a2p11(qa)(mod p)KerϕKerψ:aKerϕ,phi(a)=1,a2p11(mod p)a2p+1a(mod p)a(4p+1)2a(mod p)amodp的二次剩余,可得勒让德符号为1ψ(a)=1,KerϕKerψ,Kerψ=Kerϕ,证毕

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值