【无标题】

CINTA(五)同构

9.1证明

1

∵ G ↦ H , ϕ 为 双 射 \because G\mapsto H,\phi 为双射 GH,ϕ

∴ G , H 中 元 素 一 一 对 应 \therefore G,H中元素一一对应 G,H

∴ ϕ − 1 : H ↦ G 也 为 同 构 \therefore \phi^{-1}:H\mapsto G 也为同构 ϕ1:HG

2

∵ G ↦ H , ϕ 为 双 射 \because G\mapsto H,\phi 为双射 GH,ϕ

∴ G , H 中 元 素 一 一 对 应 \therefore G,H中元素一一对应 G,H

∴ ∣ G ∣ = ∣ H ∣ \therefore |G|=|H| G=H

3

ϕ ( a ⋅ b ) = ϕ ( a ) ∘ ϕ ( b ) \phi(a \cdot b)=\phi(a) \circ \phi(b) ϕ(ab)=ϕ(a)ϕ(b)

ϕ ( a ⋅ b ) = ϕ ( a ) ∘ ϕ ( b ) = ϕ ( b ⋅ a ) = ϕ ( b ) ∘ ϕ ( a ) \phi(a \cdot b)=\phi(a) \circ \phi(b)=\phi(b\cdot a)=\phi(b)\circ \phi(a) ϕ(ab)=ϕ(a)ϕ(b)=ϕ(ba)=ϕ(b)ϕ(a)

∴ 可 得 G 是 阿 贝 尔 群 的 话 , H 也 是 阿 贝 尔 群 \therefore 可得G是阿贝尔群的话,H也是阿贝尔群 GH

4

G 是 循 环 群 的 话 , 设 g 为 生 成 元 G是循环群的话,设g为生成元 Gg

ϕ ( g m + n ) = ϕ ( g m ) ∘ ϕ ( g n ) \phi( g^{m+n})=\phi(g^m)\circ \phi(g^n) ϕ(gm+n)=ϕ(gm)ϕ(gn)

可 得 H 也 是 循 环 群 可得H也是循环群 H

5

如果 G ′ 是 G 的 n 阶 子 群 , 由 G ′ 双 射 同 构 成 H ′ , 可 得 H ′ 为 H 的 子 群 G'是G的n阶子群,由G'双射同构成H',可得H'为H的子群 GGnGH,HH

∵ G ↦ H , ∣ G ∣ = ∣ H ∣ ∴ H ′ 也 为 n 阶 \because G\mapsto H,|G|=|H| \therefore H'也为n阶 GH,G=HHn

9.2所有无限阶的循环群都同构于群Z

证:

​ 设群G是一个无限阶的循环群, g ∈ G g \in G gG是生成元。

​ 定义 ϕ : Z ↦ G 为 ϕ : n ↦ g n \phi : Z \mapsto G为\phi:n\mapsto g^n ϕ:ZGϕ:ngn

​ 则 ϕ ( m + n ) = g m + n = g m g n = ϕ ( m ) ϕ ( n ) \phi(m+n)=g^{m+n}=g^mg^n=\phi(m)\phi(n) ϕ(m+n)=gm+n=gmgn=ϕ(m)ϕ(n)

​ 下面证明 ϕ 是 双 射 \phi 是双射 ϕ

​ 单射: ∀ a , b ∈ Z , 若 ϕ ( a ) = ϕ ( b ) , g a = g b \forall a,b\in Z,若\phi(a)=\phi(b),g^a=g^b a,bZ,ϕa=ϕ(b),ga=gb

∵ G 是 无 限 阶 的 循 环 群 , 则 a = b , ∴ 为 单 射 \because G是无限阶的循环群,则a=b,\therefore 为单射 Ga=b

​ 满射: ∀ g m ∈ G , 都 有 a 使 得 ϕ ( a ) = g m \forall g^m\in G,都有a使得\phi(a)=g^m gmGa使ϕ(a)=gm

∴ 为 满 射 \therefore 为满射

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值