【12月22日】LeetCode刷题日志(六):132 Pattern

本文介绍了一种在数组中查找是否存在三个元素符合特定‘132模式’的方法。通过逐步降低时间复杂度从O(n^3)到O(n^2),文章详细解释了两种实现策略,并提供了具体的代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述
Given a sequence of n integers a1, a2, …, an, a 132 pattern is a subsequence ai, aj, ak such that i < j < k and ai < ak < aj. Design an algorithm that takes a list of n numbers as input and checks whether there is a 132 pattern in the list.

Note: n will be less than 15,000.

题目分析
该题题意不是很很难理解,就是在一个长度在15000内的数组中判断是否存在三个元素符合“132模式”。
o(n^3)
一个很容易想到的办法就是穷举所有的可能的三元素子数组,也就是三重循环可以得到:

public boolean find132pattern(int[] nums) {
        boolean flag = false;
        int len = nums.length;
        ko:
        for(int i=0;i<len-2;i++){
            for(int j=i+1;j<len-1;j++){
                for (int m=j+1;m<len;m++)
                    if(nums[i]<nums[m] && nums[m]<nums[j]){
                    flag = true;
                    break ko;
                    }
            }
        }
        return flag;
    }

o(n^2)
进一步思考这个问题,要求找出132模式的{ai, aj, am}。为了降低复杂度,理论上要确定(*, *, *)这个三个未知数,就需要进行三次循环遍历,其解决方案就如上述,复杂度为o(n^3)。但是如果是(*, j,*)呢?接下来思考,如果j是固定的,如何确定i和m的值呢。
我们的限制条件中有ai < am < aj。也就是说ai和aj左边“边界”,再确定am。

  1. 第一步 (*, j,*) –>(i, j ,*)
  2. 第二步(i, j *) –>(i,j,m)

既然我们假定j是已经确定的,那么第一步先思考如何确定左边界i;常理上讲ai的值越小,那么下一步确定m的空间就越大。故在确定j之后,令i就是[0,j]之间的最小的元素对应的索引;第二步,如果可以顺利的找到符合的m,则结束,返回true;重复上述步骤,即可。

 public boolean find132pattern3(int[] nums) {
        for (int j = 0, min = Integer.MAX_VALUE; j < nums.length; j++) {
            min = Math.min(nums[j], min);//min用于记录[0,j]的最小值
            if (min == nums[j]) continue;

            for (int m = nums.length - 1; m > j; k--) {
                if (min < nums[m] && nums[m] < nums[j]) return true;
            }
        }

        return false;
    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值