泰勒公式与牛顿迭代

20 篇文章 0 订阅
3 篇文章 0 订阅

也许更好的阅读体验

泰勒(Taylor)公式

f ( x ) = ∑ i = 0 ∞ f ( i ) ( x 0 ) i ! ( x − x 0 ) i \begin{aligned}f\left( x\right) =\sum ^{\infty }_{i=0}\dfrac {f^{(i)}\left( x_{0}\right) }{i!}\left( x-x_{0}\right) ^{i}\end{aligned} f(x)=i=0i!f(i)(x0)(xx0)i
其中 f ( i ) f^{(i)} f(i)表示将 f f f进行 i i i阶求导
该公式表示将 f f f x 0 x_0 x0处展开, x 0 x_0 x0任取

e x e^x ex的泰勒展开

e x = ∑ i = 0 ∞ x i i ! \begin{aligned}e^x=\sum ^{\infty }_{i=0}\dfrac{x^i}{i!}\end{aligned} ex=i=0i!xi
f ( x ) = e x f(x)=e^x f(x)=ex,把其在 0 0 0处展开
则有 f ( x ) = ∑ i = 0 ∞ f ( i ) ( 0 ) i ! ( x − 0 ) i = ∑ i = 0 ∞ x i i ! \begin{aligned}f\left( x\right) =\sum ^{\infty }_{i=0}\dfrac {f^{(i)}\left( 0\right) }{i!}\left( x-0\right) ^{i}=\sum ^{\infty }_{i=0}\dfrac{x^i}{i!}\end{aligned} f(x)=i=0i!f(i)(0)(x0)i=i=0i!xi


牛顿迭代

f ≡ f 0 − g ( f 0 ) g ′ ( f 0 ) (   m o d   x 2 n ) f\equiv f_{0}-\dfrac {g\left( f_{0}\right) }{g'\left( f_{0}\right) }\left(\ mod\ x^{2n}\right) ff0g(f0)g(f0)( mod x2n)

有一个关于多项式 f f f 的方程 g ( f ) = 0 g(f)=0 g(f)=0,其中 f f f 是一个未知的形式幂级数。
假如我们已知 f f f 的前 n n n f 0 f_0 f0 则有
f ≡ f 0 (   m o d   x n ) f\equiv f_{0}\left(\ mod\ x^{n}\right) ff0( mod xn)
0 = g ( f ) = g ( f 0 ) + g ′ ( f 0 ) ( f − f 0 ) + g ′ ′ ( f 0 ) 2 ( f − f 0 ) 2 + ⋯ ≡ g ( f 0 ) + g ′ ( f 0 ) ( f − f 0 ) (   m o d   x 2 n ) \begin{aligned}0=g\left( f\right) &=g\left( f_{0}\right) +g'\left( f_{0}\right)(f-f_0)+\dfrac{g''(f_0)}{2}(f-f_0)^2+\cdots\\ &\equiv g(f_0)+g'(f_0)(f-f_0) (\ mod\ x^{2n}) \end{aligned} 0=g(f)=g(f0)+g(f0)(ff0)+2g(f0)(ff0)2+g(f0)+g(f0)(ff0)( mod x2n)

解释:
第一行为套泰勒公式且不写 ∑ \sum
第二行,我们知道 f − f 0 ≡ 0 (   m o d   x n ) f-f_0\equiv 0(\ mod\ x^n) ff00( mod xn),则有 ( f − f 0 ) 2 ≡ 0 (   m o d   x 2 n ) (f-f_0)^2\equiv 0(\ mod\ x^{2n}) (ff0)20( mod x2n),所以从第三项起都同余 0 0 0

继续写完
两边同时除以 g ′ ( f 0 ) g'(f_0) g(f0),再移项,可得
f ≡ f 0 − g ( f 0 ) g ′ ( f 0 ) (   m o d   x 2 n ) f\equiv f_{0}-\dfrac {g\left( f_{0}\right) }{g'\left( f_{0}\right) }\left(\ mod\ x^{2n}\right) ff0g(f0)g(f0)( mod x2n)

如有哪里讲得不是很明白或是有错误,欢迎指正
如您喜欢的话不妨点个赞收藏一下吧

  • 3
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 泰勒展开牛顿迭代是一种常用的数值计算方法,用于求解非线性方程的根。在Matlab中,可以使用循环结构来实现该算法。 首先,我们定义一个函数来表示需要求根的方程,假设为f(x)。然后,选择一个初始猜测值x0,并令x=x0。此后,通过泰勒展开牛顿迭代公式,可以得到下一个近似解x1的表达式,如下所示: x1 = x - f(x)/f'(x) 其中,f'(x)表示f(x)的一阶导数。 接下来,我们使用循环来迭代计算,直到满足指定的终止条件。一种常见的终止条件是设定一个最大迭代次数,或者当相邻两次迭代结果的差值小于某个阈值时停止。 下面是一个使用Matlab实现泰勒展开牛顿迭代的简单例子: ```matlab % 定义方程函数 f = @(x) cos(x) - x; % 定义方程函数的一阶导数 df = @(x) -sin(x) - 1; % 设置初始猜测值和终止条件 x0 = 0.5; maxIter = 100; tol = 1e-6; % 迭代计算 for iter = 1:maxIter x1 = x0 - f(x0)/df(x0); % 判断终止条件 if abs(x1 - x0) < tol || abs(f(x1)) < tol break; end x0 = x1; end % 输出迭代结果 disp(['迭代次数:', num2str(iter)]); disp(['迭代结果:', num2str(x1)]); ``` 在该程序中,我们使用cos(x) - x = 0作为需要求根的方程,通过迭代计算,找到了一个近似的根。 泰勒展开牛顿迭代是一种强大的数值计算方法,可以用于求解各种类型的非线性方程。当然,对于不同的方程,其迭代过程和求解结果可能有所不同,需要根据具体情况进行调整。 ### 回答2: 泰勒展开牛顿迭代是求解非线性方程的一种方法,可以通过泰勒级数的近似来逼近方程的根。以下是使用Matlab编写的简单实例程序: 1. 首先,定义函数f(x),表示要求解的非线性方程。例如,假设我们求解方程x^2 - 3 = 0,可以定义函数为f(x) = x^2 - 3。 2. 然后,定义函数f_derivative(x),表示函数f(x)的导数。假设我们求解的方程的导数为2x,可以定义函数为f_derivative(x) = 2x。 3. 接下来,定义牛顿迭代的函数newton_iter(x0),其中x0是初始猜测值。在每一次迭代中,使用泰勒级数展开近似函数的根,并更新当前的猜测值x。 ``` function [root, iterations] = newton_iter(x0) max_iterations = 100; tolerance = 1e-6; iterations = 0; while iterations < max_iterations iterations = iterations + 1; fval = f(x0); f_derivative_val = f_derivative(x0); delta_x = fval / f_derivative_val; x = x0 - delta_x; if abs(x - x0) < tolerance root = x; return; end x0 = x; end error('达到最大迭代次数但未找到解'); end ``` 4. 最后,调用函数newton_iter并给定初始猜测值x0,得到方程的近似根,并输出结果。 ``` x0 = 1; % 初始猜测值 [root, iterations] = newton_iter(x0); fprintf('方程的近似根为:%f\n', root); fprintf('迭代次数:%d\n', iterations); ``` 这样就可以使用Matlab编写一个简单的泰勒展开牛顿迭代的程序。请注意,实际的程序可能需要根据具体的方程进行修改和调整。 ### 回答3: 泰勒展开是一种数学方法,用来近似计算函数的值。而牛顿迭代是一种数值方法,用于解决方程或找到函数的根。在MATLAB中,可以将泰勒展开牛顿迭代结合起来实现更精确的数值计算。 假设我们要用泰勒展开来近似计算函数f(x)在某个点x0处的值,我们可以通过泰勒展开公式: f(x)=f(x0)+f'(x0)(x-x0)+f''(x0)/2!(x-x0)²+... 来完成近似计算。其中,f'(x0)表示函数f(x)在x0处的导数,f''(x0)表示函数f(x)在x0处的二阶导数,以此类推。 而牛顿迭代方法则是通过不断迭代逼近函数的根。假设我们要求解方程f(x)=0的根,首先选取一个初始近似值x0,然后通过牛顿迭代公式: x1 = x0 - f(x0)/f'(x0) x2 = x1 - f(x1)/f'(x1) ... 不断迭代,直到达到预定的精度要求。 在MATLAB中,可以编写一个函数,将泰勒展开牛顿迭代结合起来。首先定义函数f(x),然后计算其导数f'(x)和二阶导数f''(x),接着使用牛顿迭代公式进行迭代计算,直到满足精度要求为止。编写的程序类似如下: function result = newton_method(x0, epsilon) x = x0; while abs(f(x)) > epsilon x = x - f(x)/f_prime(x); end result = x; end 其中epsilon表示预设的精度要求。这个程序会返回近似的根。 总之,泰勒展开牛顿迭代是两种数值计算方法,通过结合它们可以在MATLAB中实现更精确的数值计算。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值