评分卡建模学习(一)————数据预处理part.1

目录

一、什么是数据的预处理

二、为什么要进行数据的预处理

三、什么样的数据需要进行预处理

四、常见的数据预处理方式

五、各种数据预处理方式的优缺点

六、数据处理的思路及代码

(一)对缺失值的处理

(二)对异常值的处理

(三)数据归一化、标准化

(四)非结构化数据转变


风控建模学习笔记,按照学习情况进行总结,希望各位大佬批评指正,让我这个小白快速进步!!

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

———————————————————————————————————————————

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

一、什么是数据的预处理

        数据的预处理是指在进行正式数据分析之前,对原始数据进行的一系列准备工作。这些工作包括数据的清洗、转换、归一化、编码、采样等,目的是使数据更适合后续的分析和建模,提高数据的质量和分析的准确性。

二、为什么要进行数据的预处理

  1. 提升数据质量:预处理可以去除数据中的噪声、异常值和缺失值,确保分析结果的可靠性。

  2. 适应模型要求:不同的数据分析模型对数据格式有不同要求,预处理可以帮助数据满足这些要求。

  3. 提高分析效率:通过预处理,可以简化数据结构,减少数据量,从而加快分析过程。

  4. 增强数据可解释性:预处理后的数据更容易理解和解释,有助于发现数据背后的规律。

三、什么样的数据需要进行预处理

  1. 原始数据:直接从数据源收集的未经处理的数据。

  2. 含有缺失值的数据:数据中存在缺失的值,影响分析的完整性。

  3. 含有异常值的数据:数据中存在与大多数数据显著不同的值。

  4. 不一致的数据:数据格式、度量标准或编码方式不统一的数据。

  5. 非结构化数据:如文本、图像等,需要转换为结构化数据才能进行分析。

四、常见的数据预处理方式

  1. 数据清洗:去除无关数据、纠正错误、填补缺失值、处理异常值。

  2. 数据转换:改变数据的格式、类型或值,如归一化、标准化、编码转换。

  3. 数据归一化/标准化:将数据缩放到一个小的特定范围,通常是[0,1]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值