【算法C++实现】2、二分查找与简单递归

原视频为左程云的B站教学



1 二分查找

二分法(Binary Search)是一种在有序数组中查找特定元素的搜索算法。

基本思想:将数组从中间分割,然后判断目标元素与中间元素的大小关系,以确定目标元素在左半部分还是右半部分。然后再在相应的子数组中继续进行同样的操作,直到找到目标元素或确定目标元素不存在。

具体步骤如下:

  • 将数组的左边界设为 left,右边界设为 right。
  • 计算中间位置 mid,即 mid = (left + right) / 2。
  • 比较目标元素与中间元素的大小关系:
    • 如果目标元素等于中间元素,则找到目标元素,返回其索引。
    • 如果目标元素小于中间元素,则更新右边界 right = mid - 1,并继续在左半部分进行二分查找。
    • 如果目标元素大于中间元素,则更新左边界 left = mid + 1,并继续在右半部分进行二分查找。
  • 重复步骤 2 和步骤 3,直到找到目标元素或左边界大于右边界。

时间复杂度O(logN),其中 n 是数组的长度。由于每次都将搜索范围减半,因此算法的效率非常高。但要求数组是有序的,否则无法应用二分法进行查找。

1.1 题:在有序数组中查找特定元素

leetcode 704 简单

基本思想是通过比较中间元素目标元素的大小关系,将查找范围缩小一半,直到找到目标元素或查找范围为空为止。

比如说数组个数为N=16, 最差的情况要分 4 次 ( [ 8 ∣ 8 ] → [ 4 ∣ 4 ] → [ 2 ∣ 2 ] → [ 1 ∣ 1 ] ) ( [8|8] \to [4|4] \to [2|2] \to [1|1] ) ([8∣8][4∣4][2∣2][1∣1]),而 4 = l o g 2 16 4 = log_216 4=log216。即时间复杂度为 O ( l o g N ) O(logN) O(logN)

/* 注意:题目保证数组不为空,且 n 大于等于 1 ,以下问题默认相同 */
int binarySearch(const std::vector<int>& arr, const int value)
{
    int left = 0;
    int right = arr.size() - 1;
    // 如果这里是 int right = arr.size() 的话,那么下面有两处地方需要修改
    // 1、循环的条件 while(left < right)
    // 2、循环内当 array[middle] > value 的时候,right = middle

    while (left <= right)
    {
        int mid = left + ((right - left) >> 1);  // 不用right+left,避免int溢出,且更快
        if (array[mid] > value)
            right = mid - 1;
        else if (array[mid] < value)
            left = mid + 1;
        else
            return mid;
        // 可能会有读者认为刚开始时就要判断相等,但毕竟数组中不相等的情况更多
        // 如果每次循环都判断一下是否相等,将耗费时间
    }
    return -1;
}

留意 left + ((right - left) >> 1) 结果等用于(right + left) / 2,但更快,且不会int溢出

1.2 题:在一个有序数组中查找>=某个数的最左侧的位置

思路依然是二分法,不同于查找某个值找到目标值就停止二分,找最左/右侧位置问题一定是二分到底


int nearLeftSearch(const std::vector<int>& arr, const int target)
{
	int left = 0;
	int right = arr.size() - 1;
	int result = -1;
	
	while (left <= right)
	{
		int mid = left + ((right - left) >> 1);
		if (arr[min] >= target) // 再往左找找有没有元素符合>=的要求
			result = mid;// 暂时记录下这个位置,因为左边可能全都比目标值小了,就已经找到了
			right = mid - 1;
		} else {		// target > arr[mid]
			left = mid + 1;
		}
	}
	return result;
}

1.3 题:在一个有序数组中查找<=某个数最右侧位置

int nearRightSearch(const std::vector<int>& arr, int target) 
{
    int left = 0;
    int right = arr.size() - 1;
    int result = -1;

    while (left <= right) {
        int mid = left + ((right - left) >> 1);

        if (arr[mid] < target) {
            right = mid - 1;
        } else {	// target >= arr[mid]
            result = mid;
            left = mid + 1;
        }
    }

    return result;
}

1.4 题:局部最小值问题(无序数组使用二分法的案例)

数组arr无序,任意相邻的两个数不等,求一个局部最小的位置(极小值),要求时间复杂度优于O(N)

无序也能二分,只要目标问题在某一边必有解,另一边无所谓,就能够使用二分

1.先判断数组两个边界

  • 如果左边界arr[0] < arr[1],已找到
  • 如果右边界arr[n-1] < arr[n-2],已找到
  • 如果两个边界都不是局部最小,又因为任意相邻的两个数不等,则左边界必然局部单调递减,右边界处局部单调递增。所以在数组内,必然有极小值点
    在这里插入图片描述

2.进行二分,判断mid与相邻位置的关系,分为3种情况: (提醒:数组中相邻两个元素是不相等的!)
在这里插入图片描述
3.重复过程2直到找到极小值

int LocalMinimumSearch(const std::vector<int>& arr) 
{
    int n = arr.size();

    if (n == 0) return -1;
    if (n == 1) return 0; // 只有一个元素,是局部最小值
	
	if (arr[0] < arr[1]) return 0;
	if (arr[n-1] < arr[n-2] return n-1;
	
	int left = 0;
    int right = n - 1;
	// 再次提醒,数组中相邻两个元素是不相等的!
    while (left < right) 
    {
        int mid = left + ((right - left) >> 1);

        if (arr[mid] < arr[mid - 1] && arr[mid] < arr[mid + 1]) {
            return mid;  	// 找到局部最小值的位置
        } else if (arr[mid - 1] < arr[mid]) {
            right = mid - 1;// 局部最小值可能在左侧
        } else {
            left = mid + 1; // 局部最小值可能在右侧
        }
    }
}

2 递归思想

来自左哥P4开头部分,属于归并排序的前置知识。这里也用到二分法。主要是理解执行过程

例题:在数组的指定范围上求最大值,利用递归实现

#include <vector>
#include <algorithm>
int process(const std::vector<int>& arr, int L, int R)
{
	if (L == R) return arr[L]; 
	
	int mid = L + ((R - L) >> 1);	// 求中点,右移1位相当于除以2
	int leftMax = process(arr, L, mid);
	int rightMax = process(arr, mid + 1, R);
	return std::max(leftMax, rightMax);
}

依赖关系图
在这里插入图片描述

2.1 递归算法时间复杂度(Master 公式)

在编程中,递归是非常常见的一种算法,由于代码简洁而应用广泛,但递归相比顺序执行或循环程序,时间复杂度难以计算,而master公式就是用于计算递归程序的时间复杂度

使用条件: 所有子问题的规模必须一致。说白了基本上就是二分、二叉树创建那种递归算法

公式 T ( N ) = a T ( N / b ) + O ( N d ) T(N) = aT(N/b) + O(N^d) T(N)=aT(N/b)+O(Nd)

  • N N N:母过程的数据规模是N
  • N / b N/b N/b:子过程数据规模
  • a a a:子过程的调用次数
  • O ( N d ) O(N^d) O(Nd):除了子问题的调用之外,其他过程的时间复杂度

拿到abd后,根据下面的不同情况得到时间复杂度(记忆:谁小,谁就微不足道,相等就相乘)

  • l o g b a > d log_ba > d logba>d:时间复杂度为 O ( N l o g b a ) O(N^{log_ba}) O(Nlogba)
  • l o g b a < d log_ba < d logba<d:时间复杂度为 O ( N d ) O(N^d) O(Nd)
  • l o g b a = d log_ba = d logba=d:时间复杂度为 O ( N d ⋅ l o g N ) O(N^d · logN) O(NdlogN)

比如上面找最大值的例子就能用这个公式:

N = 2 ⋅ T ( N 2 ) + O ( 1 ) N = 2·T(\frac{N}{2}) + O(1) N=2T(2N)+O(1)。其中,a = 2; b = 2; d = 0

l o g 2 2 = 1 > 0 log_22 = 1 > 0 log22=1>0 因此,时间复杂度为: O ( N ) O(N) O(N)

  • 1
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

宗浩多捞

您的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值