【2021.07】datawhale组队学习李宏毅task04

本笔记为datawhale7月组队学习笔记,视频链接:李宏毅《机器学习》 p13深度学习
开源文档:深度学习

深度学习的发展趋势

回顾一下deep learning的历史:

  • 1958: Perceptron (linear model)
  • 1969: Perceptron has limitation
  • 1980s: Multi-layer perceptron
    Do not have significant difference from DNN today
  • 1986: Backpropagation
    Usually more than 3 hidden layers is not helpful
  • 1989: 1 hidden layer is “good enough”, why deep?
  • 2006: RBM initialization (breakthrough)
  • 2009: GPU
  • 2011: Start to be popular in speech recognition
  • 2012: win ILSVRC image competition 感知机(Perceptron)非常像我们的逻辑回归(Logistics Regression)只不过是没有sigmoid激活函数。09年的GPU的发展是很关键的,使用GPU矩阵运算节省了很多的时间。

深度学习的三个步骤

在这里插入图片描述
深度学习也可以分为三个步骤:

  • step1:define a function,其实就是神经网络(Neural network)
  • step2:模型评估(Goodness of function)
  • step3:选择最优函数(Pick best function)

Step1:神经网络

在这里插入图片描述神经网络可以有很多不同的连接方式,这样就会产生不同的结构,在这个神经网络里面,我们有很多逻辑回归函数,其中每个逻辑回归都有自己的权重和自己的偏差,这些权重和偏差就是参数。 那这些神经元都是通过什么方式连接的呢?其实连接方式都是你手动去设计的。

完全连接前馈神经网络

概念:前馈(feedforward)也可以称为前向,从信号流向来理解就是输入信号进入网络后,信号流动是单向的,即信号从前一层流向后一层,一直到输出层,其中任意两层之间的连接并没有反馈(feedback),亦即信号没有从后一层又返回到前一层。
在这里插入图片描述
当已知权重和偏差时输入(1,-1)的结果

在这里插入图片描述
当输入0和0时,则得到0.51和0.85,所以一个神经网络如果权重和偏差都知道的话就可以看成一个函数,他的输入是一个向量,对应的输出也是一个向量。不论是做回归模型(linear model)还是逻辑回归(logistics regression)都是定义了一个函数集(function set)。我们可以给上面的结构的参数设置为不同的数,就是不同的函数(function)。这些可能的函数(function)结合起来就是一个函数集(function set)。这个时候你的函数集(function set)是比较大的,是以前的回归模型(linear model)等没有办法包含的函数(function),所以说深度学习(Deep Learning)能表达出以前所不能表达的情况。

我们通过另一种方式显示这个函数集:

全链接和前馈的理解

输入层(Input Layer):1层
隐藏层(Hidden Layer):N层
输出层(Output Layer):1层
在这里插入图片描述
为什么叫fully connect呢?

  • 因为layer n 与layer n+1之间两两都有连接;
    为什么叫feedward?
  • 传递的方向是由后往前传
深度的理解

deep = many hidden layer
在这里插入图片描述
随着层数变多,错误率降低,随之运算量增大,通常都是超过亿万级的计算。对于这样复杂的结构,我们一定不会一个一个的计算,对于亿万级的计算,使用loop循环效率很低。

这里我们就引入矩阵计算(Matrix Operation)能使得我们的运算的速度以及效率高很多:

矩阵计算

在这里插入图片描述
计算方法就是:sigmoid(权重w【黄色】 * 输入【蓝色】+ 偏移量b【绿色】)= 输出
其中sigmoid更一般的来说是激活函数(activation function),现在已经很少用sigmoid来当做激活函数。
在多层神经网络下,就像是进行了一连串的矩阵运算。
在这里插入图片描述
从结构上看每一层的计算都是一样的,也就是用计算机进行并行矩阵运算。这样写出矩阵运算的好处是,你可以使用GPU加速。整个神经网络可以这样看:

本质:通过隐藏层进行特征转换

把隐藏层通过特征提取来替代原来的特征工程,这样在最后一个隐藏层输出的就是一组新的特征(相当于黑箱操作)而对于输出层,其实是把前面的隐藏层的输出当做输入(经过特征提取得到的一组最好的特征)然后通过一个多分类器(可以是softmax函数)得到最后的输出y。
在这里插入图片描述

示例:手写数字识别

举一个手写数字体识别的例子: 输入:一个16*16=256维的向量,每个pixel对应一个dimension,有颜色用(ink)用1表示,没有颜色(no ink)用0表示 输出:10个维度,每个维度代表一个数字的置信度。
在这里插入图片描述
从输出结果来看,每一个维度对应输出一个数字,是数字2的概率为0.7的概率最大。说明这张图片是2的可能性就是最大的。
在这里插入图片描述
在这个问题中,唯一需要解决的就是一个函数,输入是256维的函数,输出是10维的向量,我们所需要的函数就是神经网络这个函数。
在这里插入图片描述
从上图看神经网络的结构决定了函数集,所以说网络结构很关键。

接下来有几个问题:

  • 多少层? 每层有多少神经元? 这个问我们需要用尝试加上直觉的方法来进行调试。对于有些机器学习相关的问题,我们一般用特征工程来提取特征,但是对于深度学习,我们只需要设计神经网络模型来进行就可以了。对于语音识别和影像识别,深度学习是个好的方法,因为特征工程提取特征并不容易。
  • 结构可以自动确定吗? 有很多设计方法可以让机器自动找到神经网络的结构的,比如进化人工神经网络(Evolutionary Artificial Neural Networks)但是这些方法并不是很普及 。
  • 我们可以设计网络结构吗? 可以的,比如 CNN卷积神经网络(Convolutional Neural Network )

Step2:模型评估

在这里插入图片描述
我们仍然用损失函数来反应模型的好坏,对于神经网络,我们采用交叉熵(cross entropy)函数来对y和 y ^ \hat y y^的损失进行计算,接下来我们就是调整参数,让交叉熵越小越好。

在这里插入图片描述
对于损失,我们不单单要计算一笔数据的,而是要计算整体所有训练数据的损失,然后把所有的训练数据的损失都加起来,得到一个总体损失L。接下来就是在function set里面找到一组函数能最小化这个总体损失L,或者是找一组神经网络的参数\thetaθ,来最小化总体损失L

Step3:选择最优函数

在这里插入图片描述
在这里插入图片描述
具体流程: θ \theta θ是一组包含权重和偏差的参数集合,随机找一个初试值,接下来计算一下每个参数对应偏微分,得到的一个偏微分的集合 ∇ L \nabla{L} L就是梯度,有了这些偏微分,我们就可以不断更新梯度得到新的参数,这样不断反复进行,就能得到一组最好的参数使得损失函数的值最小

反向传播

在这里插入图片描述
在神经网络中计算损失最好的方法就是反向传播,我们可以用很多框架来进行计算损失,比如说TensorFlow,theano,Pytorch等等

思考

隐藏层越多越好?

在这里插入图片描述

普遍性定理

在这里插入图片描述
参数多的model拟合数据很好是很正常的。下面有一个通用的理论: 对于任何一个连续的函数,都可以用足够多的隐藏层来表示。那为什么我们还需要‘深度’学习呢,直接用一层网络表示不就可以了?在接下来的课程我们会仔细讲到。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值