决策树,决策表

决策树是在已知各种情况发生概论的基础上,通过构成决策树来求取净现值的期望值大于零的概率,评价项目风险,判断其可行性的决策分析方法,是直观运用概率分析的一种图解法。由于这种决策分治画成图形很像一棵树的枝干,故称决策树。

决策树是一个预测模型,它代表的是对象属性和对象值的一种映射关系。树地每个节点表示某个对象,每个分叉路径则代表某个可能的属性值,而每个叶节点则对应从根节点到该叶节点所经历的路径所表示的对象的值。

优点:1.易于理解和实现。

           2.数据准备往往是简单或者不必要的,而且能同时处理数据型和常规型属性,能在相对短的时间对大量数据源做出可行且效果良好效果。

           3.易于通过静态测试来对模型进行评测,可以测定模型可信度。可根据观察模型所产生的决策树很容易推出相应的逻辑表达式。

缺点:1.对连续性字段较难预测。

           2.对有时间顺序的数据需要很多预处理工作。

           3.类别太多时,错误可能会增加较快。

          4.一般算法分类时,只是根据一个字段来分类。

 

 

策表又称判断表,是一种呈表格状的图形工具,适用于描述处理判断条件较多,各条件又相互组合、有多种决策方案的情况。其能将多个独立条件和多个动作直接地联系清晰的表示出来。

决策表四结构

候选条件:每个条件对应变量、关系或预测所以可能的值。

动作:要执行的过程或操作。

动作入口:根据该入口所对应的候选条件集,是否或按怎样的顺序执行动作。

 “不关心”符号:简化决策表。

优点:能罗列所有可能情况,并清晰地指出相应处理方式,便于观看理解,也避免在程序语言编写中因为逻辑的嵌套而产生遗漏。

 

### 决策树决策表在逻辑加工中的应用及描述方法 #### 决策树的定义与应用 决策树是一种基于树形结构的决策工具,能够清晰地表示多种条件及其对应的结果。其核心思想是通过一系列节点和边构建一棵树状图,其中内部节点代表测试属性或条件,而叶节点则表示最终的动作或决策结果[^3]。 决策树的优点在于直观性强、易于理解和实现,并能有效处理复杂的多层判断逻辑。例如,在智能农业领域中,可以利用决策树来评估作物生长环境是否适宜种植某种特定植物品种[^1]。具体而言,可以通过检测土壤湿度、温度以及光照强度等多个因素作为输入变量,进而得出适合与否的结论。 以下是创建简单决策树的一个Python代码示例: ```python from sklearn import tree # 定义训练数据集 (特征, 标签) X = [[0], [1]] # 特征矩阵 Y = ['No', 'Yes'] # 对应标签列表 clf = tree.DecisionTreeClassifier() model = clf.fit(X, Y) print(model.predict([[2]])) # 预测新样本属于哪个类别 ``` #### 决策表的概念与特点 相比之下,决策表更适合用来表达较为复杂且存在大量组合情况下的业务规则。它通常被划分为四个主要区域:基本条件项、条件组合项、基本动作项以及动作执行项[^5]。这些组成部分共同构成了完整的判定依据体系,使得即使面对繁杂交错的各种情形也能够条理分明地加以区分对待。 举个例子来说,当企业需要制定员工绩效考核标准时就可以运用到这种方法——设定若干评判维度如销售额达成比例、客户满意度评分等等形成初始框架;再根据不同权重分配原则确立相应等级划分界限从而得到详尽版次序排列图表供实际操作参考之用[^2]。 | 条件 | C1(>=90%) | C2(<85%) | |------|-----------|----------| | 动作A| 是 | 否 | | 动作B| 否 | 是 | 上述表格展示了如何根据两个条件C1和C2的不同取值范围决定采取何种行动(A或者B),这正是典型意义上的决策表形式之一[^5]。 #### 总结对比两者差异之处 尽管二者均旨在辅助人们做出更科学合理的抉择方案设计方面各有侧重方向不同而已。一般来说如果面临的是相对单纯直接的问题情境那么优先考虑采用决策树会更加简便快捷些反之对于那些涉及众多交叉影响要素的情况之下则推荐选用更为全面细致入微考量周全的决策表来进行分析研究工作[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值