122. 买卖股票的最佳时机 II
来源: LeetCode 122. 买卖股票的最佳时机 II
题目描述
122. 买卖股票的最佳时机 II
给定一个数组,它的第 i 个元素是一支给定股票第 i 天的价格。
设计一个算法来计算你所能获取的最大利润。你可以尽可能地完成更多的交易(多次买卖一支股票)。
注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
示例 1:
输入: [7,1,5,3,6,4]
输出: 7
解释: 在第 2 天(股票价格 = 1)的时候买入,在第 3 天(股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4 。
随后,在第 4 天(股票价格 = 3)的时候买入,在第 5 天(股票价格 = 6)的时候卖出, 这笔交易所能获得利润 = 6-3 = 3 。
示例 2:
输入: [1,2,3,4,5]
输出: 4
解释: 在第 1 天(股票价格 = 1)的时候买入,在第 5 天 (股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4 。
注意你不能在第 1 天和第 2 天接连购买股票,之后再将它们卖出。
因为这样属于同时参与了多笔交易,你必须在再次购买前出售掉之前的股票。
示例 3:
输入: [7,6,4,3,1]
输出: 0
解释: 在这种情况下, 没有交易完成, 所以最大利润为 0。
提示:
1 <= prices.length <= 3 * 10 ^ 4
0 <= prices[i] <= 10 ^ 4
思路分析
思考下每天手里股票的状态只有两种持有或者不持有
设置dp数组dp[prices.size()][2]
dp[i][0] 表示第i天不持有股票的时候的最大收益
dp[i][1] 表示第i天持有股票的时候的最大收益
第i天时候我们面对两个选择:买进卖出
相应的也就带来状态的转换
持有(卖出)不持有,不持有(无法卖出)不持有(维持状态不变)
不持有(买进)持有, 持有(无法买进)持有(维持状态不变)
dp[i][0] = max(dp[i-1][0], dp[i-1][1] - prices[i])
dp[i][1] = max(dp[i-1][1], dp[i-1][0] + prices[i])
初始化 dp[0][0] = - pricese[i] // 买入股票要花钱的啊
输出 dp[len][1] // 不持有肯定比持有钱多
代码
class Solution {
public:
int maxProfit(vector<int>& prices) {
// 持有,不持有
// dp[i][0] 为第i天持有股票所获得的最大收益
// dp[i][1] 为第i天未持有股票所获得的最大收益
// dp[i][0] = max(dp[i-1][0], dp[i-1][1] - prices[i]) 当天持有或者卖出
// dp[i][1] = max(dp[i-1][1], dp[i-1][0] + prices[i])
if(prices.size() == 0) return 0;
vector<vector<int>> dp(prices.size(), vector<int>(2,0));
dp[0][0] -= prices[0];
for(int i=1; i<prices.size(); ++i){
dp[i][0] = max(dp[i-1][0], dp[i-1][1] - prices[i]);
dp[i][1] = max(dp[i-1][1], dp[i-1][0] + prices[i]);
}
return dp.back()[1];
}
};
算法分析
- 时间复杂度O(N)
- 空间复杂度O(N)
代码改进
我们的时间复杂度应该无法缩减了
空间复杂度却仍然可以继续改变
每一天的状态只取决于前一天的状态因此只需要保存前一天的状态就可以了
// 状态压缩
int dp[2] = {0,0};
if(!prices.size()) return 0;
dp[0] -= prices[0]; //
for(int i=1; i<prices.size(); ++i){
dp[0] = max(dp[0], dp[1] - prices[i]);
dp[1] = max(dp[1], dp[0] + prices[i]);
}
return dp[1];
相似扩展
归纳总结