由于做的是多标签回归问题,转的HDF5格式,发现图像转化通道问题是一个大坑
以下转自:https://blog.csdn.net/u013841196/article/details/72799680
使用python对Caffe框架训练好的模型进行识别时发现通道转换的若干问题:
要注意一点的就是:Caffe中彩色图像的通道是BGR格式,图像存储是【0,255】
1.caffe.io.load_image方式
- image = caffe.io.load_image(image_file) #加载图片
使用caffe.io.load_image()读进来的是RGB格式和0~1(float)
所以在进行识别之前要在transformer中设置transformer.set_raw_scale('data',255)(缩放至0~255)
以及transformer.set_channel_swap('data',(2,1,0)(将RGB变换到BGR)
- # python中将图片存储为[0, 1],而caffe中将图片存储为[0, 255],所以需要一个转换
- transformer.set_raw_scale('data', 255) # 缩放到[0,255]之间
- transformer.set_channel_swap('data', (2,1,0)) #交换通道,将图片由RGB变为BGR(caffe中图片是BGR格式,而原始格式是RGB,所以要转化)
2.使用cv2.imread()来读取图片
cv2.imread()接口读图像,读进来直接是BGR 格式and 0~255
所以不需要再缩放到【0,255】和通道变换【2,1,0】,不需要transformer.set_raw_scale('data',255)和transformer.set_channel_swap('data',(2,1,0))
3.使用PIL来读取图片
对于彩色图像,不管其图像格式是PNG,还是BMP,或者JPG,在PIL中,使用Image模块的open()函数打开后,返回的图像对象的模式都是“RGB”。而对于灰度图像,不管其图像格式是PNG,还是BMP,或者JPG,打开后,其模式为“L”。所以需要转换格式,但不需要缩放到[0,255]
- data = np.array(Image.open(self.dataRoot+img_list))
- data = np.transpose(data,(2,0,1))#转换通道
- data[[0,2],...] = data[[2,0],...] #RGB→BGR
4.对于matlab来说
Caffe中的blobs格式是N*C*H*W,分别是数量Number,通道数Channel,以及宽度Height和宽度Width
而matlab中是先宽后高,即[w,h],图像的通道是RGB
所以需要进行相应的转换:
im_data = im (:,:,[3,2,1]) ; %RGB to BGR
im_data = permute(im_data, [2,1,3]); %旋转高度和宽度
最后,分享一个Caffe的典型python识别代码:
- # -*- coding: utf-8 -*-
- """
- Created on Sun May 28 16:00:47 2017
- @author: fancp,#windows下CPU模式
- """
- import numpy as np
- import caffe
- import sys
- caffe_root = 'F:/Caffe' #########你自己的Caffe路径
- sys.path.insert(0, caffe_root + '/python')
- size = 227 #训练的图片尺寸
- image_file = 'F:/.../.../nihao.jpg'#图片路径
- model_def = 'F:/.../.../deploy.prototxt'#deploy模型文件位置
- model_weights = 'F:/.../.../_iter_20000.caffemodel'#训练完的模型位置
- net = caffe.Net(model_def, model_weights, caffe.TEST)
- # 加载均值文件
- mu = np.load(caffe_root + '/python/caffe/imagenet/ilsvrc_2012_mean.npy') ###caffe 自带的文件
- mu = mu.mean(1).mean(1) # average over pixels to obtain the mean (BGR) pixel values
- ###########################下面这5句等同与上面两句,选择其一#################
- #blob = caffe.proto.caffe_pb2.BlobProto()
- #mean_data = open( 'mean.binaryproto' , 'rb' ).read()
- #blob.ParseFromString(mean_data)
- #mu = np.array(caffe.io.blobproto_to_array(blob))
- #mu = mu.mean(1).mean(1).mean(1)
- ##############################################################################
- #图片预处理
- transformer = caffe.io.Transformer({'data': net.blobs['data'].data.shape}) ##设定图片的shape格式(1,3,227,227),大小由deploy 文件指定
- # python读取的图片文件格式为H×W×K,需转化为K×H×W
- transformer.set_transpose('data', (2,0,1)) #改变维度的顺序,由原始图片(227,227,3)变为(3,227,227)
- transformer.set_mean('data', mu) # 每个通道减去均值
- # python中将图片存储为[0, 1],而caffe中将图片存储为[0, 255],所以需要一个转换
- transformer.set_raw_scale('data', 255) # 缩放到【0,255】之间
- transformer.set_channel_swap('data', (2,1,0)) #交换通道,将图片由RGB变为BGR(caffe中图片是BGR格式,而原始格式是RGB,所以要转化)
- net.blobs['data'].reshape(1,3,size, size) # 将输入图片格式转化为合适格式(与deploy文件相同)
- #上面这句,第一参数:图片数量 第二个参数 :通道数 第三个参数:图片高度 第四个参数:图片宽度
- image = caffe.io.load_image(image_file) #加载图片
- # 用上面的transformer.preprocess来处理刚刚加载图片
- net.blobs['data'].data[...] = transformer.preprocess('data', image)
- ### perform classification
- caffe.set_mode_cpu()
- output = net.forward()
- #print output
- output_prob = output['prob'][0].argmax() # 给出概率最高的是第几类,需要自己对应到我们约定的类别去
注:根据自己的训练模型进行修改,这个是AlexNet上的修改
完毕!