一.微分方程的基本概念
-
常微分方程
含有未知函数导数(或微分)的等式称为微分方程,若未知函数为一元的,则称此方程为常微分方程。
-
方程的阶
微分方程中未知函数最高阶数称为微分方程的阶数
-
微分方程的解
- 解:若将某个函数代入方程中未知函数位置上,方程变为恒等式,则称此函数为方程的一个解
- 通解:若有一个含有n个无关的任意常数的函数是一个n阶微分方程的解,则称这个含有n个任意常数的解为此函数的通解
- 奇解:通解不能包含的解为方程的奇解。(一般由作除法产生)
- 特解:通解中任意常数确定后的解为方程的奇解
-
定解条件(初始条件)
y ∣ x = x 0 = a 1 , y ′ ∣ x = x 0 = a 2 , ⋯ , y ( n − 1 ) ∣ x = x 0 = a n y\Big|_{x=x_0}=\left.a_1,y^{\prime}\right|_{x=x_0}=\left.a_2,\cdots,y^{(n-1)}\right|_{x=x_0}=a_n y x=x0=a1,y′∣x=x0=a2,⋯,y(n−1) x=x0=an
二.可分离变量方程
-
定义
称y’=f(y)g(x)的方程为可分离变量的方程
-
解法
分离变量后再积分
y ′ = d y d x = f ( y ) g ( x ) ⇒ d y f ( y ) = g ( x ) d x ⇒ ∫ d y f ( y ) = ∫ g ( x ) d x 为其通解 . \begin{gathered} y^{\prime}=\frac{dy}{dx}=f\left(y\right)g\left(x\right) \\ \Rightarrow\frac{dy}{f(y)}=g(x)\mathrm{d}x \\ \Rightarrow\int\frac{\mathrm{d}y}{f(y)}=\int g(x)\mathrm{d}x\text{为其通解}. \end{gathered} y′=dxdy=f(y)g(x)⇒f(y)dy=g(x)dx⇒∫f(y)dy=∫g(x)dx为其通解.
三.一阶线性齐次方程
-
定义
称y’=p(x)y+q(x)为一阶线性微分方程,当q(x)=0时,为一阶线性齐次方程
-
求解
y = C e ∫ p ( x ) d x y=Ce^{\int p\left(x\right)\mathrm{d}x} y=Ce∫p(x)dx
四.一阶线性非齐次方程
-
定义
y’=p(x)y+q(x)为一阶线性非此次微分方程
-
解法
y = e ∫ p ( x ) d x [ C + ∫ q ( x ) e − ∫ p ( x ) d x d x ] y=e^{\int p(x)\mathrm{d}x}\left[C+\int q(x)e^{-\int p(x)\mathrm{d}x}\mathrm{d}x\right] y=e∫p(x)dx[C+∫q(x)e−∫p(x)dxdx]
五.伯努利方程
-
定义
形如 d y d x + P ( x ) y = Q ( x ) ⋅ y n ( n ≠ 0 , 1 ) \text{形如}\frac{\mathrm{d}y}{\mathrm{d}x}+P(x)y=Q(x)\cdot y^n\quad(n\neq0,1) 形如dxdy+P(x)y=Q(x)⋅yn(n=0,1) -
解法
d y d x + P ( x ) y = Q ( x ) y n 1. 两边同时除以 y n ,得: y − n d y d x + P ( x ) y ( 1 − n ) = Q ( x ) 2. 令 z = y ( 1 − n ) ,则: d z d x = ( 1 − n ) y − n d y d x ,即 d y d x = y n 1 − n ⋅ d z d x 3. 将还原后得因式代入 1 式子,得: 1 1 − n ⋅ d z d x + P ( x ) z = Q ( x ) \begin{aligned} &\frac{dy}{dx}+P(x)y=Q(x)y^n \\ &1.\text{两边同时除以}y^n\text{,得:}y^{-n}\frac{dy}{dx}+P(x)y^{(1-n)}=Q(x) \\ &2.\text{令}z=y^{(1-n)}\text{,则:}\frac{dz}{dx}=(1-n)y^{-n}\frac{dy}{dx}\text{,即}\frac{dy}{dx}=\frac{y^n}{1-n}\cdotp\frac{dz}{dx} \\ &3.\text{将还原后得因式代入}1\text{式子,得:}\frac1{1-n}\cdotp\frac{dz}{dx}+P(x)z=Q(x) \end{aligned} dxdy+P(x)y=Q(x)yn1.两边同时除以yn,得:y−ndxdy+P(x)y(1−n)=Q(x)2.令z=y(1−n),则:dxdz=(1−n)y−ndxdy,即dxdy=1−nyn⋅dxdz3.将还原后得因式代入1式子,得:1−n1⋅dxdz+P(x)z=Q(x)
此时,代入通解公式即可求得结果。
注意:这里的n是次方而不是导数,伯努利方程并属于高阶方程。
六.可降阶的高阶微分方程
-
类型1
方程 y ( n ) = f ( x ) \text{方程 }y^{(n)}=f(x) 方程 y(n)=f(x)
解法:求n次积分即可 -
类型2
方程 F ( x , y ( n ) , y ( n + 1 ) ) = 0 \text{方程}F\left(x,y^{(n)},y^{(n+1)}\right)=0 方程F(x,y(n),y(n+1))=0
解法:
设 y ( n ) = u , 方程化为一阶方程 F ( x , u , u ′ ) = 0 \text{设}y^{(n)}=u,\text{方程化为一阶方程}F\left(x,u,u^{\prime}\right)=0 设y(n)=u,方程化为一阶方程F(x,u,u′)=0
通过求解一阶方程,将方程2转化为类型1 -
类型3
方程 F ( y , y ′ , y ′ ′ ) = 0 \text{方程}F\left(y,y^{\prime},y^{\prime\prime}\right)=0 方程F(y,y′,y′′)=0
解法
设 y ′ = u = d y d x , y ′ ′ = d u d x = d u d y ⋅ d y d x = u d u d y 方程化为一阶方程 F ( y , u , u d u d y ) = 0 \begin{aligned}&\text{设 }y^{\prime}=u=\frac{\mathrm{d}y}{\mathrm{d}x},\\&y^{\prime\prime}=\frac{\mathrm{d}u}{\mathrm{d}x}=\frac{\mathrm{d}u}{\mathrm{d}y}\cdot\frac{\mathrm{d}y}{\mathrm{d}x}=u\frac{\mathrm{d}u}{\mathrm{d}y}\\&\text{方程化为一阶方程}F\left(y,u,u\frac{\mathrm{d}u}{\mathrm{d}y}\right)=0\end{aligned} 设 y′=u=dxdy,y′′=dxdu=dydu⋅dxdy=udydu方程化为一阶方程F(y,u,udydu)=0
线性微分方程通解结构
- n阶线性方程
形如 y ( n ) + a n − 1 ( x ) y ( n − 1 ) + ⋯ + a 1 ( x ) y ′ + a 0 ( x ) y = f ( x ) 的方程为 n 阶线性方程,这里 a n − 1 ( x ) , ⋯ , a 1 ( x ) , a 0 ( x ) , f ( x ) 是 x 的已知函数, f ( x ) 称之为方程的非齐次项 . 如果 f ( x ) ≡ 0 , 称为 n 阶线性齐次方程 . 如果 f ( x ) ≠ 0 , 称为 n 阶线性非齐次方程 . \begin{aligned}&\text{形如 }y^{(n)}+a_{n-1}(x)y^{(n-1)}+\cdots+a_1(x)y^{\prime}+a_0(x)y=f(x)\\&\text{的方程为}n\text{阶线性方程,这里}a_{n-1}(x),\cdots,a_1(x),a_0(x),\\&f\left(x\right)\text{是}x\text{的已知函数,}f\left(x\right)\text{称之为方程的非齐次项}.\\&\text{如果}f\left(x\right)\equiv0,\text{称为}n\text{阶线性齐次方程}.\\&\text{如果}f\left(x\right)\neq0,\text{称为}n\text{阶线性非齐次方程}.\end{aligned} 形如 y(n)+an−1(x)y(n−1)+⋯+a1(x)y′+a0(x)y=f(x)的方程为n阶线性方程,这里an−1(x),⋯,a1(x),a0(x),f(x)是x的已知函数,f(x)称之为方程的非齐次项.如果f(x)≡0,称为n阶线性齐次方程.如果f(x)=0,称为n阶线性非齐次方程. - 线性齐次方程解的结构
定理1
如果函数 y 1 ( x ) 与 y 2 ( x ) 是方程的两个解, 则 y = C 1 y 1 + C 2 y 2 也是 y ′ ′ + p ( x ) y ′ + q ( x ) y = 0 的解 . \text{如果函数}y_1(x)\text{与}y_2(x)\text{是方程的两个解,}\\\text{则 }y=C_1y_1+C_2y_2\text{也是}y^{\prime\prime}+p(x)y^{\prime}+q(x)y=0\text{的解}. 如果函数y1(x)与y2(x)是方程的两个解,则 y=C1y1+C2y2也是y′′+p(x)y′+q(x)y=0的解.
定理2
设 y 1 , y 2 , ⋅ ⋅ ⋅ , y n 为 n 阶线性齐次微分方程的 线性无关的解,则 y = C 1 y 1 + C 2 y 2 + ⋯ + C n y n 方程的通解 . \begin{aligned}&\text{设}y_1,y_2,\cdotp\cdotp\cdotp,y_n\text{为}n\text{阶线性齐次微分方程的}\\&\text{线性无关的解,则 }y=C_1y_1+C_2y_2+\cdots+C_ny_n\\&\text{方程的通解}.\end{aligned} 设y1,y2,⋅⋅⋅,yn为n阶线性齐次微分方程的线性无关的解,则 y=C1y1+C2y2+⋯+Cnyn方程的通解. - 线性非齐次方程解的结构
定理1
设 y ∗ y^{*} y∗是 y ′ ′ + p ( x ) y ′ + q ( x ) y = f ( x ) y^{\prime\prime}+p(x)y^{\prime}+q(x)y=f(x) y′′+p(x)y′+q(x)y=f(x)的一个特解, Y Y Y是 y ′ ′ + p ( x ) y ′ + q ( x ) y = 0 y^{\prime\prime}+p\left(x\right)y^{\prime}+q\left(x\right)y=0 y′′+p(x)y′+q(x)y=0的通解,则 y = Y + y ∗ y=Y+y^{*} y=Y+y∗是非齐次方程的通解。
定理2
定理2.设 y 1 ∗ y_1^{*} y1∗ 是 y ′ ′ + p ( x ) y ′ + q ( x ) y = f 1 ( x ) y^\prime\prime+p(x)y^{\prime}+q(x)y=f_1(x) y′′+p(x)y′+q(x)y=f1(x)的特解, 设 y 2 ∗ y_2^{*} y2∗ 是 y ′ ′ + p ( x ) y ′ + q ( x ) y = f 2 ( x ) y^\prime\prime+p(x)y^{\prime}+q(x)y=f_2(x) y′′+p(x)y′+q(x)y=f2(x)的特解,那么 y = y 1 ∗ + y 2 ∗ y=y_{1}^{*}+y_{2}^{*} y=y1∗+y2∗是 y ′ ′ + p ( x ) y ′ + q ( x ) y = f 1 ( x ) + f 2 ( x ) y^\prime\prime+p(x)y^{\prime}+q(x)y=f_{1}(x)+f_{2}(x) y′′+p(x)y′+q(x)y=f1(x)+f2(x)的特解.