1.Introduction
本文是2019年发表在EMNLP上的一篇论文,这也是第一次图卷积技术第一次运用在ABSA中。我们知道在ABSA中目前主流的方法是基于注意力机制的模型。然而注意力机制并不能捕获一个句子中上下文及其方面之间的句法依赖,从而导致了对于一个给定的方面,注意力机制可能会错误地将句法上不相干的上下文词作为描述符。因此,作者通过图所具有的特定的性质来解决这些问题。在本文中,作者主要有三大贡献:1)利用句子的句法依赖结构,解决了ABSA中长期多词依赖性问题。2)提出了一个全新的面向方面的GCN模型。3)实验结果比其他模型的结果更好。
2.Model
2.1 Graph Convolutional Networks
GCN模型算是CNN模型的一种改进。在GCN中,各节点的更新处理只与其邻接节点有关。具体公式如下:
在等式的左边定义为第l层中第i个节点的hideen representation。
在等式的右边定义为领接矩阵中第i行与第j列的值,即第i个节点与第j个节点是否相连(