Aspect-based Sentiment Classification with Aspect-specific Graph Convolutional Networks 阅读笔记

1.Introduction

本文是2019年发表在EMNLP上的一篇论文,这也是第一次图卷积技术第一次运用在ABSA中。我们知道在ABSA中目前主流的方法是基于注意力机制的模型。然而注意力机制并不能捕获一个句子中上下文及其方面之间的句法依赖,从而导致了对于一个给定的方面,注意力机制可能会错误地将句法上不相干的上下文词作为描述符。因此,作者通过图所具有的特定的性质来解决这些问题。在本文中,作者主要有三大贡献:1)利用句子的句法依赖结构,解决了ABSA中长期多词依赖性问题。2)提出了一个全新的面向方面的GCN模型。3)实验结果比其他模型的结果更好。

2.Model

2.1 Graph Convolutional Networks

GCN模型算是CNN模型的一种改进。在GCN中,各节点的更新处理只与其邻接节点有关。具体公式如下:

在等式的左边定义为第l层中第i个节点的hideen representation。

在等式的右边定义为领接矩阵中第i行与第j列的值,即第i个节点与第j个节点是否相连(

情感分析是一种通过计算机程序对文本中的情绪进行分析的技术。方面的使用生成对比学习方法。生成对比学习是一种通过比较两个不同视角的数据来提高模型性能的方法。在这种情感分析中,我们可以使用生成方法来自动提取文本中的情感方面,并结合对比学习方法来提高模型的性能。通过这种方法,我们可以更准确地识别文本中不同方面的情感,并且能够更好地区分出正面和负面情绪。 在这个过程中,我们首先使用生成模型来自动提取文本中的情感方面,然后结合对比学习方法来进行训练,以提高模型对情感方面的识别能力。这种方法可以帮助我们更准确地理解文本中的情感内容,并且能够更好地适应不同类型文本的情感分析任务。 此外,我们还可以使用这种方法来进行情感方面的生成,并结合对比学习方法来训练模型,使得生成的情感方面能够更接近真实的情感内容。通过这种方法,我们可以生成更加准确和自然的情感内容,并且能够更好地适应不同类型的情感生成任务。 综上所述,generative aspect-based sentiment analysis with contrastive learning and exp的方法可以帮助我们更准确地识别和生成文本中的情感内容,并且能够更好地适应不同类型文本的情感分析和生成任务。这种方法在自然语言处理领域具有广阔的应用前景。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值