self-attention是注意力机制中的一种,也是transformer中的重要组成部分,而self-attention其本质的基础便是上一文提到了attention。本文中只讲解最简单的Self-Attention Mechanism,涉及到其他的会在transformer里面进行提及。
1.Self-Attention Mechanism模型结构
在Self-Attention的模型中,模型的输出是对整个模型的输入进行一个考虑,最终得到了相应的输出。(类似于Attention中S_i对于每个H_1.H_2,H_3的考虑)

上图所展示的便是Self-Attention的一个基本的运行结构。
明白了大致的模型结构,我们来具体了解一下B_1是如何得到的。
首先,我们需要去计算a_1,对应其他a_2,a_3,a_4的一个相关性。在我这里我们使用向量点积的方式来得到两个2向量之间的相关性。

上图所展示的便是相关性的计算过程。
我们看到我们会将输入的两个向量分别乘上对应的矩阵,W_q和W_k,得到Q(Query)和K(Key)两个结果。然后再用两个结果做内积得到相关性。(注意这里的W_q和W_k是两个可以学习的矩阵参数)。
通过上面的方法我们便可以得到a_1和a_2的相关性

最低0.47元/天 解锁文章
902

被折叠的 条评论
为什么被折叠?



