Seq2Seq 是一种循环神经网络的变种,包括编码器 (Encoder) 和解码器 (Decoder) 两部分。Seq2Seq 是自然语言处理中的一种重要模型,可以用于机器翻译、对话系统、自动文摘。
1 Seq2Seq模型结构
我们提到在Seq2Seq的模型中包括了Encoder和Decoder两个部分。在下文中,我们的Encoder和Decoder均使用LSTM模型来进行编码和解码的工作。

上图所展示的是Seq2Seq的模型结构图。
我们可以看到,我们的Source通过Embedding层后,进入了循环层(这里们是LSTM)。进过多次Encoder的循环层以后,将其输出输入Eecoder中。最后再由Decoder进行一个输出。
1.1 Seq2Seq的模型过程
在上面我们大概讲解了Seq2Seq大致的模型流程图。在1.1部分,我们主要讲一下Seq2Seq模型的运作过程。
以翻译为例。一开始,我们需要将需要翻译的句子放入Encoder中(这里就是Source),随后Sources经历了多层的循环网络以后,会输出最后一层的state(h,c)。而这输出的最后一层的state(h,c)便是Decoder的输入,成为了Decoder的初始的一个状态。

最低0.47元/天 解锁文章
868

被折叠的 条评论
为什么被折叠?



