introsort的快排跑排序OJ代码
introsort是introspective sort采⽤了缩写,他的名字其实表达了他的实现思路,他的思路就是进⾏⾃ 我侦测和反省,快排递归深度太深(sgi stl中使⽤的是深度为2倍排序元素数量的对数值)那就说明在这种数据序列下,选key出现了问题,性能在快速退化,那么就不要再进⾏快排分割递归了,改换为堆 排序进⾏排序。
void Swap(int* x, int* y)
{
int tmp = *x;
*x = *y;
*y = tmp;
}
void AdjustDown(int* a, int n, int parent)
{
int child = parent * 2 + 1;
while (child < n)
{
// 选出左右孩⼦中⼤的那⼀个
if (child + 1 < n && a[child + 1] > a[child])
{
++child;
}
if (a[child] > a[parent])
{
Swap(&a[child], &a[parent]);
parent = child;
child = parent * 2 + 1;
}
else
{
break;
}
}
}
void HeapSort(int* a, int n)
{
// 建堆 -- 向下调整建堆 -- O(N)
for (int i = (n - 1 - 1) / 2; i >= 0; --i)
{
AdjustDown(a, n, i);
}
// ⾃⼰先实现 -- O(N*logN)
int end = n - 1;
while (end > 0)
{
Swap(&a[end], &a[0]);
AdjustDown(a, end, 0);
--end;
}
}
void InsertSort(int* a, int n)
{
for (int i = 1; i < n; i++)
{
int end = i-1;
int tmp = a[i];
// 将tmp插⼊到[0,end]区间中,保持有序
while (end >= 0)
{
if (tmp < a[end])
{
a[end + 1] = a[end];
--end;
}
else
{
break;
}
}
a[end + 1] = tmp;
}
}
void IntroSort(int* a, int left, int right, int depth, int defaultDepth)
{
if (left >= right)
return;
// 数组⻓度⼩于16的⼩数组,换为插⼊排序,简单递归次数
if(right - left + 1 < 16)
{
InsertSort(a+left, right-left+1);
return;
}
// 当深度超过2*logN时改⽤堆排序
if(depth > defaultDepth)
{
HeapSort(a+left, right-left+1);
return;
}
depth++;
int begin = left;
int end = right;
// 随机选key
int randi = left + (rand() % (right-left + 1));
Swap(&a[left], &a[randi]);
int prev = left;
int cur = prev + 1;
int keyi = left;
while (cur <= right)
{
if (a[cur] < a[keyi] && ++prev != cur)
{
Swap(&a[prev], &a[cur]);
}
++cur;
}
Swap(&a[prev], &a[keyi]);
keyi = prev;
// [begin, keyi-1] keyi [keyi+1, end]
IntroSort(a, begin, keyi - 1, depth, defaultDepth);
IntroSort(a, keyi+1, end, depth, defaultDepth);
}
void QuickSort(int* a, int left, int right)
{
int depth = 0;
int logn = 0;
int N = right-left+1;
for(int i = 1; i < N; i *= 2)
{
logn++;
}
// introspective sort -- ⾃省排序
IntroSort(a, left, right, depth, logn*2);
}
int* sortArray(int* nums, int numsSize, int* returnSize){
srand(time(0));
QuickSort(nums, 0, numsSize-1);
*returnSize = numsSize;
return nums;
}
这个方法比较神的地方在于可以适用于绝大多数情况