智能计算数学基础——回归问题

机器学习的角度着手分析。

1、先来个小例子

给定一组data:1,2,3,4,5,?
猜测5后面的数是多少?
想必,我们会猜测是6

具体思路是这样的:
我们假定这组data服从一个规律, f f f,满足 f ( 1 ) = 1 , f ( 2 ) = 2 , f ( 3 ) = 3 , f ( 4 ) = 4 , f ( 5 ) = 5 f(1)=1,f(2)=2,f(3)=3,f(4)=4,f(5)=5 f(1)=1,f(2)=2,f(3)=3,f(4)=4,f(5)=5
这时,从最简单的角度出发,猜测规律 f f f为: f ( x ) = x f(x)=x f(x)=x,从而推断 f ( 6 ) = 6 f(6)=6 f(6)=6

总结: 以上算是一个特别简单的数据拟合问题,即回归问题。

2、回归问题

给定N组对应关系的符号表示: ( x 1 , y 1 ) , . . . , ( x N , y N ) (x_1,y_1),...,(x_N,y_N) (x1,y1),...,(xN,yN),其中 x i ∈ R n , y i ∈ R x_i\in R^n,y_i\in R xiRn,yiR

x i ∈ R n x_i\in R^n xiRn,表示 x i x_i xi n n n维向量。
y i ∈ R y_i\in R yiR,表示 y i y_i yi为一个实数。

每一组 ( x i , y i ) (x_i,y_i) (xi,yi)都有 x i ➡ y i x_i➡y_i xiyi的对应关系。
从函数的角度,要想整体描述 x x x y y y的关系,则目标是:
找到这样一个函数 f f f,满足: y i ≈ f ( x i ) y_i≈f(x_i) yif(xi),即
( y 1 ⋮ y N ) ≈ ( f ( x 1 ) ⋮ f ( x N ) ) \left( \begin{matrix} y_1\\ \vdots \\ y_N \end{matrix} \right)≈\left( \begin{matrix} f(x_1)\\ \vdots \\ f(x_N) \end{matrix} \right) y1yNf(x1)f(xN)
显然,这是一个数据拟合,即回归问题。
这时,要让左右两边向量尽可能近。

向量,可以理解为高维空间中的点。
高维空间中点的距离,最简单的定义是2-范数的平方。

范数:某个向量空间中每个向量的长度或大小。
2-范数是常用范数,表达式为: ∣ ∣ x ∣ ∣ 2 = ( x 1 2 + ⋯ + x n 2 ) 1 / 2 ||x||_2=(x_1^2+\cdots+x_n^2)^{1/2} x2=(x12++xn2)1/2,其中下角标2常省略。

因此,向量之间的距离表示为: ∣ ∣ a − b ∣ ∣ 2 = ∑ i = 1 n ( a i − b i ) 2 ||a-b||^2=\displaystyle\sum_{i=1}^n(a_i-b_i)^2 ab2=i=1n(aibi)2,该距离也称为欧氏距离。

左右两边向量的距离 d = ∑ i = 1 n ( y i − f ( x i ) ) 2 d=\displaystyle\sum_{i=1}^n(y_i-f(x_i))^2 d=i=1n(yif(xi))2,表示对函数 f f f契合度的度量,要使 d d d尽可能小。

f f f时,假设 f f f是最简单的线性函数, f ( x ) = a t x + b f(x)=a^tx+b f(x)=atx+b,其中 a ∈ R n , b ∈ R a\in R^n,b\in R aRn,bR

a , b a,b a,b为函数的参数,也称为模型的参数。
a a a默认为是一个列向量, a t a^t at表示 a a a的转置。
eg:
a = ( 1 2 3 ) a=\left( \begin{matrix} 1\\ 2\\ 3 \end{matrix} \right) a=123,则 a t = ( 1 , 2 , 3 ) a^t=(1,2,3) at=(1,2,3)

a t x = < a , x > = ∑ i = 1 n a i x i a^tx=<a,x>=\displaystyle\sum_{i=1}^na_ix_i atx=<a,x>=i=1naixi < a , x > <a,x> <a,x> a , x a,x a,x的内积。

因此,问题转化为了这样一个优化问题:
m i n i m i z e minimize minimize d d d,求参数 a , b a,b a,b
m i n i m i z e ( a , b ) \underset{(a,b)}{minimize} (a,b)minimize ∑ i = 1 n ( y i − a t x i − b ) 2 \displaystyle\sum_{i=1}^n(y_i-a^tx_i-b)^2 i=1n(yiatxib)2
一旦求解了这个优化问题,那么 a , b a,b a,b就可以找到了。、
m i n ( a , b ) \underset{(a,b)}{min} (a,b)min ∑ i = 1 n ( y i − a t x i − b ) 2 \displaystyle\sum_{i=1}^n(y_i-a^tx_i-b)^2 i=1n(yiatxib)2记作 g ( a , b ) g(a,b) g(a,b),即: g ( a , b ) = m i n ( a , b ) g(a,b)=\underset{(a,b)}{min} g(a,b)=(a,b)min ∑ i = 1 n ( y i − a t x i − b ) 2 \displaystyle\sum_{i=1}^n(y_i-a^tx_i-b)^2 i=1n(yiatxib)2,
后续课程会涉及到 g ( a , b ) g(a,b) g(a,b)是一个凸函数,在最小值点 ⇒ \Rightarrow
∂ a g = 0 \partial_{a}g=0 ag=0 n n n个方程
∂ b g = 0 \partial_{b}g=0 bg=0➡1个方程
n + 1 n+1 n+1个方程,解出 n + 1 n+1 n+1个变量,从而得出 a , b a,b a,b的值。

∂ \partial 偏导数,也是偏微分

3、总结

3.1、做科研时,总是要去解决一个具体的问题,可以分为以下这么几步:
idea➡math(数学推演)➡optimization(优化问题)➡algo

3.2、在回归问题中,涉及到多元微积分,多元微积分是优化的基础,微积分与优化的关系如下:
一元微积分 ⇒ \Rightarrow 多元微积分 ⇒ \Rightarrow 优化 ⇒ \Rightarrow 凸优化
前者均为后者的基础,无论是微积分还是优化,都是服务于机器学习的,机器学习中的很多算法,就是一个优化问题。

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值