智能计算数学基础——常用不等式

1、绝对值不等式

求和的绝对值≤绝对值的求和
∣ a 1 + ⋯ + a n ∣ ≤ ∣ a 1 ∣ + ⋯ + ∣ a n ∣ |a_1+\cdots +a_n|≤|a_1|+\cdots+|a_n| a1++ana1++an
即: ∣ ∑ i = 1 n a i ∣ ≤ ( ∑ i = 1 n a i 2 ) |\displaystyle\sum_{i=1}^{n}a_i|≤(\displaystyle\sum_{i=1}^{n}a_i^2) i=1nai(i=1nai2)

2、Cauchy(柯西)不等式

( ∑ i = 1 n a i b i ) 2 ≤ ∑ i = 1 n a i 2 ∑ i = 1 n b i 2 (1) (\displaystyle\sum_{i=1}^{n}a_ib_i)^2≤\displaystyle\sum_{i=1}^{n}a_i^2\displaystyle\sum_{i=1}^{n}b_i^2\tag{1} (i=1naibi)2i=1nai2i=1nbi2(1)
⇔ ∣ < a , b > ∣ ≤ ∣ ∣ a ∣ ∣ ⋅ ∣ ∣ b ∣ ∣ \Leftrightarrow|<a,b>|≤||a||·||b|| <a,b>∣∣a∣∣∣∣b∣∣

证明1:
式(1)右边-左边
= ∑ i = 1 n a i 2 ∑ i = 1 n b i 2 − ( ∑ i = 1 n a i b i ) 2 =\displaystyle\sum_{i=1}^{n}a_i^2\displaystyle\sum_{i=1}^{n}b_i^2-(\displaystyle\sum_{i=1}^{n}a_ib_i)^2 =i=1nai2i=1nbi2(i=1naibi)2
= ∑ i , j n ( a i b j − a j b i ) 2 =\displaystyle\sum_{i,j}^{n}(a_ib_j-a_jb_i)^2 =i,jn(aibjajbi)2 ≥ 0 ≥0 0
不等式成立。
证明2:
显而易见, ∀ λ ≥ 0 , ∑ i = 1 n ( a i − λ b i ) 2 ≥ 0 \forall \lambda ≥0,\displaystyle\sum_{i=1}^{n}(a_i-\lambda b_i)^2≥0 λ0i=1n(aiλbi)20
⇒ ∑ i = 1 n ( a i 2 − 2 a i b i λ + b i 2 λ 2 ) ≥ 0 \Rightarrow\displaystyle\sum_{i=1}^{n}(a_i^2-2a_ib_i\lambda+ b_i^2\lambda^2)≥0 i=1n(ai22aibiλ+bi2λ2)0
⇒ ( ∑ i = 1 n b i 2 ) λ 2 − 2 ( ∑ i = 1 n a i b i ) λ + ∑ i = 1 n a i 2 ≥ 0 \Rightarrow(\displaystyle\sum_{i=1}^{n}b_i^2)\lambda^2-2(\displaystyle\sum_{i=1}^{n}a_ib_i)\lambda+\displaystyle\sum_{i=1}^{n}a_i^2≥0 (i=1nbi2)λ22(i=1naibi)λ+i=1nai20
f ( λ ) = ( ∑ i = 1 n b i 2 ) λ 2 − 2 ( ∑ i = 1 n a i b i ) λ + ∑ i = 1 n a i 2 f(\lambda)=(\displaystyle\sum_{i=1}^{n}b_i^2)\lambda^2-2(\displaystyle\sum_{i=1}^{n}a_ib_i)\lambda+\displaystyle\sum_{i=1}^{n}a_i^2 f(λ)=(i=1nbi2)λ22(i=1naibi)λ+i=1nai2,它是一个二次函数,
f ( λ ) ≥ 0 f(\lambda)≥0 f(λ)0,则方程 f ( λ ) = 0 f(\lambda)=0 f(λ)=0根的判别式≤0。
即: b 2 − 4 a c b^2-4ac b24ac
= 4 ( ∑ i = 1 n a i b i ) 2 − 4 ∑ i = 1 n a i 2 ∑ i = 1 n b i 2 ≤ 0 =4(\displaystyle\sum_{i=1}^{n}a_ib_i)^2-4\displaystyle\sum_{i=1}^{n}a_i^2\displaystyle\sum_{i=1}^{n}b_i^2≤0 =4(i=1naibi)24i=1nai2i=1nbi20
( ∑ i = 1 n a i b i ) 2 ≤ ∑ i = 1 n a i 2 ∑ i = 1 n b i 2 (\displaystyle\sum_{i=1}^{n}a_ib_i)^2≤\displaystyle\sum_{i=1}^{n}a_i^2\displaystyle\sum_{i=1}^{n}b_i^2 (i=1naibi)2i=1nai2i=1nbi2

判别式:判定方程实根个数及分布情况的公式。
对于一元二次方程 a x 2 + b x + c = 0 ( a ≠ 0 ) ax^2+bx+c=0(a≠0) ax2+bx+c=0(a=0)来说,根的判别式为 Δ = b 2 − 4 a c \Delta =b^2-4ac Δ=b24ac
①当方程有两个不相等的实数根时, Δ \Delta Δ>0;
②当方程有两个相等的实数根时, Δ \Delta Δ=0;
③当方程没有实数根时, Δ \Delta Δ<0。

3、算术-几何平均不等式

给定一组数: a 1 , ⋯   , a n a_1,\cdots,a_n a1,,an
算术平均值为 ( ∑ i = 1 n a i ) / n (\displaystyle\sum_{i=1}^{n}a_i)/n (i=1nai)/n
几何平均值为 ( ∏ i = 1 n a i ) 1 n (\displaystyle\prod_{i=1}^{n}a_i)^{\frac{1}{n}} (i=1nai)n1
算术-几何平均不等式: 1 n ( ∑ i = 1 n a i ) ≥ ( ∏ i = 1 n a i ) 1 n \frac{1}{n}(\displaystyle\sum_{i=1}^{n}a_i)≥(\displaystyle\prod_{i=1}^{n}a_i)^{\frac{1}{n}} n1(i=1nai)(i=1nai)n1

证明:
n = 2 n=2 n=2时,
1 2 ( a 1 + a 2 ) ≥ a 1 a 2 \frac{1}{2}(a_1+a_2)≥\sqrt{a_1a_2} 21(a1+a2)a1a2
⇔ ( a 1 + a 2 ) 2 ≥ 4 a 1 a 2 \Leftrightarrow(a_1+a_2)^2≥4a_1a_2 (a1+a2)24a1a2
⇔ ( a 1 − a 2 ) 2 ≥ 0 \Leftrightarrow(a_1-a_2)^2≥0 (a1a2)20
n = 3 n=3 n=3时,
1 3 ( a 1 + a 2 + a 3 ) ≥ ( a 1 a 2 a 3 ) 1 3 \frac{1}{3}(a_1+a_2+a_3)≥(a_1a_2a_3)^{\frac{1}{3}} 31(a1+a2+a3)(a1a2a3)31
⇔ x 3 + y 3 + z 3 ≥ 3 x y z \Leftrightarrow x^3+y^3+z^3≥3xyz x3+y3+z33xyz
⇔ ( x + y + z ) [ ( x − y ) 2 + ( y − z ) 2 + ( z − x ) 2 ] ≥ 0 \Leftrightarrow (x+y+z)[(x-y)^2+(y-z)^2+(z-x)^2]≥0 (x+y+z)[(xy)2+(yz)2+(zx)2]0

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值