计算机视觉 | 面试题:06、ReLU函数在0处不可导,为什么在深度学习网络中还这么常用?

ReLU函数在0处不可导,但在深度学习中广泛使用。为解决不可导问题,可以通过定义0处导数为0或使用ln(1+ex)近似。ReLU的优势包括简洁性、稀疏性、快速运算,以及对比sigmoid缓解梯度消失问题。然而,其可能导致神经元死亡,为此出现了Leaky ReLU等变体。
摘要由CSDN通过智能技术生成

问题

ReLU函数在0处不可导,为什么在深度学习网络中还这么常用?

问题背景

这是在阿里的机器学习岗一面的时候问的一个问题,最开始的问题是“为什么机器学习中解决回归问题的时候一般使用平方损失(即均方误差)?”。

当时我的回答是损失函数是是模型预测值与真实值之间的一种距离度量,我们可以计算出每个样本的预测值与真实值之间的距离,全部加起来就得到了所谓的损失函数。而距离的度量可以采用预测值与真实值之间差的绝对值,或者两者之差的平方,当然更高次的也行,只要你喜欢。正如问题所述,为什么我们一般使用的是两者之差的平方而不是两者只差的绝对值呢?其实这与模型的求解相关,举最简单的线性回归为例,如果采用的距离是两者之差的绝对值,那么求解的目标函数如下:
( ω ∗ ,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Mrrunsen

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值