R语言并行运算

本文探讨了R语言中并行运算的不同方法,包括for循环、apply家族、purrr包、parallel包和foreach,通过家庭电力消费数据集的实例对比了它们的运行速度。实验结果显示,parallel包在多核运算中表现最优,平均用时最短,而foreach在并行运算中的效率低于预期。文章鼓励读者深入研究并行运算的效率问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

R语言运行通常只会占用cpu一个核,并未充分利用电脑cpu的性能。

以parallel包运行过程为例,通常多核运算的过程如下:

  1. 启动多核进程,对每个核心进行初始化

  2. 将数据分发给每个核心

  3. 将任务平均分配给每个核心,并把代码传递给每个核心

  4. 等待所有核心完成任务,并从每个核心提取结果

  5. 停止多核进程

这个时候或许有人问,如果分配的任务数多于核心数,怎么整?此时程序等待首批分配任务的核心完成工作以后再分配给它们,是不是像流水线上的工人一样(老资本家了)。

今天以uci数据库中的家庭电力消费数据集为例,比较几种不同方式运算速度的差异。

数据集下载的网址为:http://archive.ics.uci.edu/ml/machine-learning-databases/00235/

该数据集共有2075259个观测,9个变量:

  1. date: 日期

  2. time: 时间

  3. global_active_power: 家庭平均每分钟有功功率

  4. global_reactive_power: 家庭平均每分钟无功功率

  5. voltage: 平均每分钟电压

  6. global_intensity: 平均每分钟电流强度

  7. sub_metering_1: 厨房用电

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Mrrunsen

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值