R:断点回归分析设计

本文介绍了R语言中进行断点回归分析的方法,重点讨论了`rdrobust`、`rdbwselect`和`rdplot`三个关键命令。`rdbwselect`用于带宽选择,`rdrobust`用于进行鲁棒的断点回归估计,而`rdplot`则用于可视化结果。案例中通过分析美国参议院在任优势数据,展示了如何导入数据、选择最优带宽、参数估计及绘图。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

断点回归的基本命令是rd,另外,还有一些其他命令,例如rdrobust、rdlocrand、rddensity等等。本文主要介绍R语言中的rdrobust。

rdrobust有两个配套命令:rdbwselect用于带宽选择,rdplot用于RD绘图(详细信息请参见Calonico、Cattaneo和Titiunik [2015a])。

1、rdbwselect

下载安装方法为:

install.packages('rdrobust')

library(rdrobust)

rdrobust语法格式为:

rdbwselect(y, x, c = NULL,  fuzzy = NULL, 
              deriv = NULL, p = NULL, q = NULL, 
              covs = NULL, covs_drop = TRUE,
              kernel = "tri", weights = NULL, bwselect = "mserd", 
              vce = "nn",  cluster = NULL, nnmatch = 3, 
              scaleregul = 1, sharpbw = FALSE, 
              all =
断点回归设计是一种用于研究在某个临界点或转折点处,自变量和因变量之间关系的统计方法。它可以帮助我们确定是否存在某个阈值,在该阈值之前和之后,自变量对因变量的影响是否存在差异。 在进行断点回归设计时,我们首先需要明确有关变量的设定。通常,我们将一个连续变量作为自变量,并假设在某个特定值处存在一个阈值。接下来,我们将自变量在这个阈值前后分为两个区间,并分别拟合两个线性回归模型。我们可以使用拟合优度、t检验、残差分析等方法来评估两个区间内的回归模型的拟合效果和统计显著性。 在Stata软件中,实现断点回归设计可以使用命令“reg”和“egen”。首先,我们需要使用“egen”命令根据阈值将连续变量分为两个区间。例如,可以使用以下命令将变量x分为小于等于阈值t的部分和大于阈值t的部分: ``` egen small_x = total(x <= t) egen large_x = total(x > t) ``` 然后,我们可以分别拟合两个区间内的线性回归模型,并进行统计分析。例如,使用以下命令进行拟合和分析: ``` reg y x if small_x == 1 predict yhat_s, xb reg y x if large_x == 1 predict yhat_l, xb local R2_s = e(r2) local R2_l = e(r2) ttest yhat_s == yhat_l ``` 上述命令先进行回归拟合,并使用“predict”命令获取拟合值。然后,我们分别计算两个区间的回归模型的R方值,并使用“ttest”命令进行拟合模型之间的显著性检验。 总之,断点回归设计可以帮助我们研究在某个临界点处的变量关系,并通过Stata软件的实现过程,我们可以对同区间内的回归模型进行拟合和统计分析。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Mrrunsen

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值