FactoMineR和factoextra包括的降维方法可以根据数据变量的特点(定量/数值、定性/分类、混合)对这些方法进行区分。
主成分分析(PCA)
例:洛杉矶街区数据
来自美国人口普查局2000年的数据,包括了洛杉矶地区110个街区,15个变量。使用rvest包,从网络获取这个数据集。它的15个变量如下表所示:
表:洛杉矶街区数据集
我们只使用其中的六个变量(Income,Schools,Diversity,Age,Homes,Vets)进行主成分分析,其余的变量中取出与种族有关的四个变量(Asian,Black,Latino,White)作为探索性数据分析的补充变量。使用FactoMineR包的函数PCA()实现主成分分析:
library(FactoMineR)
library