R语言 Lung Cancer Data分析

该博客分析了12625x56的肺癌数据矩阵,进行了主成分分析(PCA)、名义逻辑回归、LDA和SVM,以及K-means和层次聚类。PCA结果显示前三组件解释了55.8%的方差,用于散点图绘制。Logistic回归、LDA和SVM预测结果一致,准确率为1。然而,K-means和层次聚类未能合理分类样本,与实际类别不符。
摘要由CSDN通过智能技术生成

Question 2: Lung Cancer Data

The data.txt file is a 12625 x 56 matrix; each column (row) of the matrix corresponds to the individual case (gene). Among the 56 cases,

  • Columns 1~20: pulmonary carcinoid samples (Carcinoid);
  • Columns 21~33: colon cancer metastasis samples (Colon);
  • Columns 34~50: normal lung samples (Normal);
  • Columns 51~56: small cell carcinoma samples (SmallCell).

Before the following analyses, please first center each row of the data, i.e. remove the mean of each row and transpose the matrix.

library(tidyverse)
lungcancer = read.table("lungcancer.txt")
##  center each row of the data  and   transpose 
data = data.f
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Mrrunsen

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值