贝叶斯优化

本文介绍了贝叶斯优化,一种用于机器学习模型调参的方法,它基于高斯过程更新目标函数的后验分布。与网格搜索和随机搜索不同,贝叶斯优化考虑了历史信息,迭代次数少且对非凸问题表现稳健。高斯过程是贝叶斯优化的基础,通过均值函数和协方差函数决定函数分布。贝叶斯优化通过Acquisition Function平衡开发和探索,寻找全局最优解。
摘要由CSDN通过智能技术生成

Bayes Optimization

1. 介绍

本章节贝叶斯优化用于机器学习模型调参使用,由J.Snoek(2012)提出,主要思想是给定优化的目标函数(只需要指定输入和输出即可,无需知道内部结构以及数学性质),通过不断添加样本点来更新目标函数的后验分布(posterior distribution),该过程相当于是高斯过程(通俗点说就是每次使用参数均均考虑之前参数的相关信息,从而更好的调整当前的参数)。

与常规的网格搜索或者随机搜索的区别是:

  • 贝叶斯调参采用高斯过程,考虑之前的信息,不断的更新先验;网格搜索活随机搜索未考虑之前的信息
  • 贝叶斯调参迭代次数相对较少,速度快;
  • 贝叶斯调参相较于网格搜索,对非凸问题依然稳健,而网格搜索容易得到局部最优解。

下面主要主要分两部分介绍,分别是高斯过程和贝叶斯调参过程。

  • 高斯过程,用于拟合优化目标函数
  • 贝叶斯优化,包括"开采"和"勘探",用以花最少的代价找到最优值

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Mrrunsen

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值