贝叶斯优化(BayesianOptimization)

本文详细介绍了贝叶斯优化的概念、流程及应用,重点探讨了采集函数(如UCB、PI和EI)在平衡探索与利用中的作用,并通过模拟实验展示了贝叶斯优化如何快速找到可接受的最大值,对比了它与网格搜索的优缺点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

贝叶斯优化

  这篇blog参考github上一个基于高斯过程回归的贝叶斯优化开源项目(python):https://github.com/fmfn/BayesianOptimization


贝叶斯优化器的介绍

  贝叶斯优化在不知道目标函数(黑箱函数)长什么样子的情况下,通过猜测黑箱函数长什么样,来求一个可接受的最大值。和网格搜索相比,优点是迭代次数少(节省时间),粒度可以到很小,缺点是不容易找到全局最优解。
  贝叶斯优化流程图如下:

在这里插入图片描述
  贝叶斯优化有两个核心过程,先验函数(Prior Function,PF)与采集函数(Acquisition Function,AC),采集函数也可以叫效能函数(Utility Funtcion),但一般还是称呼为采集函数,见下面引用论文A Tutorial on Bayesian Optimization of Expensive Cost Functions, with Application to Active User Modeling and Hierarchical Reinforcement Learning的话。PF主要利用高斯过程回归(也可以是其它PF函数,但高斯过程回归用的多);AC主要包括EI,PI,UCB这几种方法,同时exploration与exploitation的平衡,也是通过AC来完成的。

The process of deciding where to sample next requires the choice of a utility function…To make clear which function we are discussing, we will refer to this utility as the acquisition function (also sometimes called the infill function)


采集函数(Acquisition Function,AC)

  常见的采集函数有下面三种,UCB,PI,EI,先介绍最好理解的UCB。

UCB(Upper confidence bound)

   U C B = μ ( x ) + k σ ( x ) UCB=\mu (x)+k\sigma (x) UCB=μ(x)+kσ(x),k为调节参数,直观地理解为上置信边界。

PI(probability of improvement)

   P I ( x ) = P ( f ( x ) ≥ f ( x + ) + υ ) = Φ ( μ ( x ) − f ( x + ) − υ σ ( x ) ) PI(x)=P(f(x)\geq f(x^{+})+\upsilon)=\Phi (\frac{\mu(x)-f(x^{+})-\upsilon}{\sigma(x)}) PI(x)=P(f(x)f(x+)+υ)=Φ(σ(x)μ(x)f(x+)υ)
  超参数 υ \upsilon υ用于调节exploitation与exploitation, υ = 0 \upsilon=0 υ=0更倾向于收敛到 f ( x + ) 附 近 , f(x^{+})附近, f(x+)
Φ ( ⋅ ) 表 示 正 态 累 计 分 布 函 数 , f ( x + ) 表

<think>好的,我现在要回答用户关于贝叶斯优化的流程和流程图的问题。首先,我需要回忆贝叶斯优化的基本概念和步骤。贝叶斯优化主要用于优化黑箱函数,尤其是在机器学习中超参数调优的场景。用户需要了解整个流程以及相关的图表说明,所以我需要详细分解流程的各个阶段,并考虑如何用文字描述图表的内容,因为目前无法直接插入图片。 首先,贝叶斯优化主要包含两个核心部分:代理模型(通常是高斯过程)和采集函数。流程大致分为初始化、迭代优化、评估和更新模型这几个步骤。我需要确保每个步骤都解释清楚,并且结合用户提供的引用内容,特别是引用[3],其中提到了贝叶斯统计模型和采样函数的重要性。 接下来,用户可能希望看到流程图的结构,比如初始采样、构建代理模型、选择下一个参数点、评估目标函数,然后循环迭代。需要将这一过程用文字形式呈现,并指出每个步骤的关键点,例如代理模型如何建模不确定性,采集函数(如EI、PI、UCB)如何平衡探索和利用。 此外,用户提到机器学习中的超参数调优,所以需要将贝叶斯优化与此应用场景结合,举例说明如何用于调整学习率、批量大小等参数,并引用提供的参考资料中的相关内容,如引用[1]中提到的调参管理,引用[3]中的贝叶斯优化框架。 还需要注意用户要求的中文回答、LaTeX格式的数学公式,以及生成相关问题。要检查LaTeX语法是否正确,例如代理模型的数学表达式和采集函数的公式是否正确使用$$...$$格式。同时,确保回答结构清晰,分步骤说明,帮助用户逐步理解。 最后,生成的相关问题需要与贝叶斯优化相关,涵盖流程、代理模型、应用场景、与网格搜索对比以及采集函数类型等方面,确保问题有针对性,能够帮助用户进一步深入学习。 现在要组织这些内容,确保符合格式要求,正确引用标注,并自然融入引用内容。同时避免使用Markdown,保持口语化的思考过程,但最终回答要符合用户的结构要求,分步骤和图表说明,最后列出相关问题。</think>### 贝叶斯优化流程详解 贝叶斯优化是一种高效的全局优化方法,常用于机器学习超参数调优、自动化实验设计等场景[^3]。其核心流程分为以下步骤: #### 1. **初始化阶段** - **目标函数建模**:假设待优化的目标函数$f(x)$(如模型验证集精度)是黑箱且评估成本高。 - **初始采样**:随机选取少量参数组合$D = \{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$,其中$y_i = f(x_i) + \epsilon$($\epsilon$为噪声)。 - **代理模型构建**:使用高斯过程(Gaussian Process, GP)对$f(x)$建模,得到后验分布: $$P(f | D) \propto P(D | f) P(f)$$ 代理模型会预测未知点的均值和方差,量化不确定性。 #### 2. **迭代优化阶段** - **采集函数选择**:根据代理模型的预测,通过采集函数(Acquisition Function)选择下一个评估点$x_{n+1}$。常见函数包括: - **期望改进(EI)**:$$EI(x) = \mathbb{E}[\max(f(x) - f(x^+), 0)]$$ - **置信上界(UCB)**:$$UCB(x) = \mu(x) + \kappa \sigma(x)$$ - **概率改进(PI)**:基于$f(x)$超过当前最优值的概率。 - **评估与更新**:计算$y_{n+1} = f(x_{n+1})$,将新数据加入$D$,并更新代理模型。 #### 3. **终止条件** - 达到最大迭代次数。 - 目标函数改进小于阈值(如验证集精度变化<0.1%)。 --- ### 贝叶斯优化流程图(文字描述) ``` [初始化随机采样] → [构建代理模型(高斯过程)] → [采集函数选择下一个点]       ↑                                          ↓       └──────[评估目标函数并更新数据集] ←───────┘ ``` 1. **左半部分(建模)**:代理模型通过历史数据建模目标函数的分布,预测未探索区域的表现。 2. **右半部分(探索-利用权衡)**:采集函数平衡“利用已知最优区域”和“探索高不确定性区域”。 --- ### 在机器学习超参数调优中的应用 - **典型场景**:优化学习率、批量大小、神经网络层数等参数。 - **优势**:相比网格搜索,贝叶斯优化通过智能采样减少计算成本(如图像分类任务中可减少50%训练次数)[^1]。 - **工具示例**:Hyperopt、BoTorch等库实现了贝叶斯优化框架,支持并行化调参。 --- ### 相关图表说明 1. **代理模型预测图**:横轴为超参数取值,纵轴为目标函数值。显示均值曲线(预测)和置信区间(不确定性)。 2. **采集函数热力图**:高亮显示建议的下一个采样点(如EI值最大的区域)。 3. **迭代过程动态图**:展示代理模型和采集函数随迭代次数的演变(可参考论文中的示意图)。 ---
评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值