学习笔记--贝叶斯优化

https://zhuanlan.zhihu.com/p/29779000 首先要感谢这篇知乎文章,对贝叶斯的大部分的理解都是从这里得到,想要专业的去理解,可以去看这篇文章。

通过对贝叶斯优化的学习,想在此记录自己的一点点理解,公式我本人不太擅长,就不说公式了,文中配图均来自上面的知乎链接中。

简介

贝叶斯优化就是一种超参数的调参方式,当前比较著名的调参方式有Grid Search,Random Search还有贝叶斯优化,前面两种方式,一种是非随机选择超参数,一种是随机的,它们的原理其实并没有区别,都是算一遍,然后取最好的那个。只不过随机选择方式,需要计算的超参数可能没有Grid多,计算量大大减小,因此大多数人都推荐Random。

过程

然而贝叶斯优化从原理上就与它们进行了区分。主要的步骤有两个:高斯过程和采样函数(acquisition Function)。

具体流程为:
1.初始化:随机在数据中采样几个点,数量没有规定,得到n个(x,y)
2.将这n个样本点进行高斯过程的计算,得到一个基于当前这n个点的后验分布,见下图:在这里插入图片描述红色的是随机选取的三个样本点,通过高斯过程,建立了一个高斯模型,然后用这个模型计算数据集中所有x,得到每个点的均值和方差,图中虚线是均值曲线,蓝色上下边代表的是,均值加减方差的值,这样就得到了这张图片。

这里引用原文对这张图解释得很清楚的一段话:从曲线可以看出,中间的点均值较大,而且方差也比较大,很有可能这个点的超参数可以训练得到一个效果指标好的模型。那为什么要选均值大和方差大的点呢?因为前面提到均值代表期望的最终结果,当然是越大越好,但我们不能每次都挑选均值最大的,因为有的点方差很大也有可能存在全局最优解,因此选择均值大的点我们成为exploritation(开发),选择方差大的点我们称为exploration(探索)。那么究竟什么时候开发什么时候探索,并且开发和探索各占多少比例呢?不同的场景其实是可以有不同的策略的,例如我们的模型训练非常慢,只能再跑1组超参数了,那应该选择均值较大的比较有把握,如果我们计算力还能可以跑1000次,那么就不能放弃探索的机会应该选择方差大的,而至于均值和方差比例如何把握,这就是我们要定义的acquisition function了。acquisition function是一个权衡exploritation和exploration的函数,最简单的acquisition function就是均值加上n倍方差(Upper condence bound算法),这个n可以是整数、小数或者是正数、负数,更复杂的acquisition function还有Expected improvement、Entropy search等等。在原来的图上加上acquisition function曲线,然后我们求得acquisition function的最大值,这是的参数值就是贝叶斯优化算法推荐的超参数值,是根据超参数间的联合概率分布求出来、并且均衡了开发和探索后得到的结果。

3.采样函数:到这里我们仅仅得到了当前3个点的后验概率分布,我们最终的目的是得到整个数据集的一个大概的概率分布,所以我们需要映入第四个采样点来更新概率模型。那应该怎么选取这第四个点呢?上面这段话已经说得很清楚了。需要引入采样函数来选下一个点。如下图所示。
在这里插入图片描述图中下半部分便是acquisition Function曲线,曲线因为是由均值和方差计算得出,理应要找到最大的那个点才是最合适的取值点。所以五角星对应的x就是第四个要取值的点。
在这里插入图片描述
插入第四个点后,重新计算高斯过程,得到一个新的概率分布模型,再用这个新的概率模型,对每个x点计算新的均值方差,再计算新的采样曲线,得到新图如上,此时采样曲线的最大值为五角星所在的点,这个点便是要插入的下一个样本点。
在这里插入图片描述
过程都一样,上图是5个点的图,就这样不断的往复循环,往复循环,最终会得到一个比较能代表数据集的一个概率模型。通过这个模型就可以求出表现相对更好的超参数。

这就是整个贝叶斯优化的过程,写的很粗糙,如有理解或写得不对地方,请大佬指正。

  • 6
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
tf-idf是一种机器学习中常用的特征提取方法,它可以用来评估一个词在文本中的重要程度。tf-idf表示词频-逆文档频率(term frequency-inverse document frequency)。tf代表词频,指的是某个词在文本中出现的频率。idf代表逆文档频率,指的是词在整个语料库中出现的频率的倒数。通过计算tf和idf的乘积,可以得到一个词的tf-idf值,这个值越大,则表示这个词在文本中越重要。 在NLP中,tf-idf广泛应用于文本分类、信息检索和文本挖掘等任务。它的主要思想是,通过提取关键词的tf-idf值来代表文本的特征,然后使用这些特征训练分类器或进行文本检索。tf-idf能够帮助我们识别并区分不同文本中的重要词汇,从而提高分类和检索的准确性。 朴素叶斯分类算法则是一种基于叶斯定理和特征条件独立性假设的分类算法。它假设每个特征之间相互独立,并通过先验概率和条件概率来计算后验概率。朴素叶斯算法在文档分类和垃圾邮件过滤等领域有广泛应用。 在文本分类任务中,可以结合tf-idf和朴素叶斯算法来进行文本分类。首先,使用tf-idf提取文本的特征向量,然后使用这些特征向量训练朴素叶斯分类器。在实际应用中,可以使用混淆矩阵等评估指标来评估分类器的性能。 总结起来,tf-idf是一种用于提取文本特征的方法,而朴素叶斯是一种基于叶斯定理和特征条件独立性假设的分类算法。它们可以结合使用来进行文本分类任务。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值