在R语言中,我们可以使用lme4包中的glmer()函数来拟合混合效应模型,并进行逻辑回归分析。glmer()函数的用法与glm()函数类似,但是它能够处理具有随机效应的数据。
下面是一个示例代码,使用glmer()函数拟合一个包含随机截距和斜率的混合效应模型:
library(lme4)
# 创建一个包含固定效应和随机效应的数据框
data <- data.frame(
y = c(1,
在R语言中,我们可以使用lme4包中的glmer()函数来拟合混合效应模型,并进行逻辑回归分析。glmer()函数的用法与glm()函数类似,但是它能够处理具有随机效应的数据。
下面是一个示例代码,使用glmer()函数拟合一个包含随机截距和斜率的混合效应模型:
library(lme4)
# 创建一个包含固定效应和随机效应的数据框
data <- data.frame(
y = c(1,