使用fda包进行约束函数估计,具体来说是正约束(positive constraint),并使用温哥华的降水数据进行示例。
步骤 1: 加载fda库和获取数据
首先,我们需要加载fda库以及获取用于演示的数据。在这个示例中,我们使用了温哥华(Vancouver)的降水数据作为示例数据。
library('fda')
# Vancouver precipitation data
VancPrec = CanadianWeather$dailyAv[,'Vancouver','Precipitation.mm']
day = 1:365
步骤 2: 创建基函数
为了对数据进行平滑估计,我们需要创建基函数。在这个例子中,我们使用了Fourier基函数,它适用于拟合周期性数据。
fbasis = create.fourier.basis(c(1,365),365)
步骤 3: 定义约束条件
在这一步中,我们定义了约束条件,即如何对估计的函数进行约束。具体来说,我们定义了一个特定的光滑度惩罚操作符(harmLfd
),它考虑了正约束(positive constraint)并确保估计的函数在所有点都为正数。我们还设置了平滑参数 lambda
,以控制平滑度。
# 定义光滑度惩