KNN算法

KNN算法是比较简单的机器学习算法。

其优点有:

        精度高、对异常值不敏感、无数据输入假定

缺点是:

计算复杂度高、空间复杂度高

(来一条数据扫一遍数据集,还要排序,当然高了。。)

用于分类。

思想是找K个近似的数据点,统计决定分类结果

相似性(距离)算法一般有曼哈顿距离、欧式距离和余弦相似度三种。


数据一般要做个归一化处理,很简单。(值-最小值)/(最大值-最小值)


欧式距离python简单实现代码


def KNN(inX, dataSet, labels, k):
    dataSetSize = dataSet.shape[0]
    diffMat = tile(inX, (dataSetSize,1)) - dataSet
    sqDiffMat = diffMat**2
    sqDistances = sqDiffMat.sum(axis=1)
    distances = sqDistances**0.5
    sortedDistIndicies = distances.argsort()
    classCount={}          
    for i in range(k):
        voteIlabel = labels[sortedDistIndicies[i]]
        classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1
    sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True)
    return sortedClassCount[0][0]


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值