基于Openrouter的API调用免费大模型

基于Openrouter的API调用免费大模型

Openrouter是一个 AI 模型聚合平台,它通过统一的 API 接口整合了全球超过 200 种主流的 AI 模型,包括 GPT-4、Claude、Gemini 等知名模型,也支持国产通义千问、DeepSeek 等。用户可以通过简单的配置和调用,就可以直接或API访问这些大模型。
Openrouter的核心优势在于其统一的 API 设计,开发者只需编写少量代码,即可与多个模型交互,无需为每个模型单独编写调用代码。此外,它还支持自动路由与回退机制,能够根据输入提示选择最适合的模型,并在某个模型不可用时自动切换到其他替代模型。对于国内用户来说,Openrouter的部分服务即可访问,这为开发者带来了极大的便利。
2025 年 4 月 9 日报道:Openrouter近日宣布重大政策调整,将每日免费模型调用次数从原先的 200 次调整至 50 次,同时推出新的激励措施——账户余额超过 10 美元的用户将享有每日 1000 次的调用上限。对标记为":free"后缀的免费模型版本,每分钟请求上限设为 20 次,日调用总量从 200 次下调至 50 次。
在这里插入图片描述

1. 基于OpenAI SDK调用OpenRouter中大模型的API

1.1 调用DeepSeek-R1

通过 OpenAI 的 API 功能,调用大语言模型。首先进行客户端初始化,连接到Openrouter 的 API 端点,调用指定的 AI 模型(如“deepseek/deepseek-r1:free”),并发送对话消息,最终打印模型返回的回答内容。

from openai import OpenAI

# 初始化客户端
client = OpenAI(
    api_key="Your_API_Key",  # 替换为你的API密钥
    base_url="https://openrouter.ai/api/v1"
)

# 调用
response = client.chat.completions.create(
    model="deepseek/deepseek-r1:free",
    messages=[
        {"role": "system", "content": "You are a helpful assistant"},
        {"role": "user", "content": "什么是节能减排?"},
    ],
    stream=False
)

print(response.choices[0].message.content)

1.2 调用英伟达llama-3.1-nemotron-nano-8b-v1的API

Llama-3.1-Nemotron-Nano-8B-v1是由英伟达基于Meta 的 Llama-3.1-8B-Instruct 微调而来的大语言模型(LLM)。使用 OpenAI 客户端连接到Openrouter的 API 端点,调用指定的“nvidia/llama-3.1-nemotron-nano-8b-v1:free”模型,并发送对话消息,最终打印模型返回的回答内容。

from openai import OpenAI
# 初始化客户端
client = OpenAI(
  base_url="https://openrouter.ai/api/v1",
  api_key= "Your_API_Key",  # 替换为你的API密钥
)
# 调用
completion = client.chat.completions.create(
  model="nvidia/llama-3.1-nemotron-nano-8b-v1:free",
  messages=[
    {
      "role": "user",
      "content": "什么是温室气体?"
    }
  ]
)
print(completion.choices[0].message.content)

实际用下来,果然还是DeepSeek在中文语境中的文本生成更合理,而英伟达微调的llama模型对中文问题回答的不是很理想,经常夹杂这英文和日文。

2. 通过Langchain调用Openrouter中大模型的免费API

通过 LangChain 的 ChatOpenAI 类初始化一个聊天模型(deepseek/deepseek-r1:free),连接到Openrouter的 API 端点。然后调用模型,并打印模型返回的内容。

from langchain_openai import ChatOpenAI

# 初始化LLM
llm = ChatOpenAI(
    model='deepseek/deepseek-r1:free',  # 使用DeepSeek聊天模型
    api_key="Your_API_Key",  # 替换为你的API密钥
    base_url ='https://openrouter.ai/api/v1',  # API的端点
    max_tokens=1024  # 设置最大生成token数
)

# 简单调用
response = llm.invoke("请介绍一下人工智能发展现状")
print(response.content)
### 调用 OpenRouter DeepSeek API 的方法 为了调用 OpenRouter 提供的 DeepSeek API,首先需要完成必要的准备工作并理解其工作流程。 #### 准备工作 访问 groq 开发者平台(需国际网络环境),使用企业邮箱注册账号(推荐 Gmail 或 Outlook)。在模型库中挑选适合需求的 `DeepSeek2170B-Xtreme` 版本,并获取相应的 API 密钥。此密钥用于身份验证,在每次请求时作为参数传递给服务器[^2]。 #### Python 客户端配置实例 对于 Python 用户来说,可以通过安装开源客户端「樱桃工作室」来简化与 API 的交互过程: ```python from cherry_client import GroqConnector conn = GroqConnector( api_key="sk-xxxxxx", model="DeepSeek-2170b-xtreme", quantization="8bit" ) ``` 这段代码展示了如何创建一个连接对象 `conn` 来初始化 Cherry Client 库中的 `GroqConnector` 类。这里指定了三个重要属性:API 密钥 (`api_key`)、使用的具体模型名称 (`model`) 和量化级别 (`quantization`)。通过设置这些选项可以有效减少显存消耗约 40%,从而提高性能表现。 #### 发送 HTTP 请求至 RAGFlow RESTful API 除了上述基于 SDK 的方式外,还可以直接向 RAGFlow 所提供的 RESTful API 接口发送 POST 请求来进行数据处理。基本 URL 地址为 `https://demo.ragflow.io/v1/` ,而具体的路径取决于所需执行的操作类型。例如,要发起一次查询,则可构建如下形式的完整 URI: ``` POST /v1/query?toolbench_rapidapi_key=your_api_key_here Host: demo.ragflow.io Content-Type: application/json { "prompt": "你想询问的内容", } ``` 请注意替换其中占位符部分的实际值,特别是 `your_api_key_here` 处应当填入之前所获得的有效 API Key 。此外还需确保 Content-Type 设置正确以便能够解析 JSON 格式的负载体[^1]。 #### 解析响应结果 当成功接收到由 API 返回的数据包之后,通常会得到一个包含预测输出或其他相关信息的对象结构。根据实际应用场景的不同,可能还需要进一步解析该返回值才能满足业务逻辑的要求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值