增量学习与在线学习

0. 机器学习

0.1 机器学习工作流的9个阶段

(1)模型需求

(2)数据收集

(3)数据清洗

(4)数据标注

(5)特征工程

(6)模型训练

(7)模型评估

(8)模型部署

(9)模型监控

1. 增量学习

        学得模型后,再接收到训练样例时,仅需根据新样例对模型进行更新,不必重新训练整个模型,并且之前学得的有效信息不会被冲掉。

2. 在线学习

        每获得一个新样本就进行一次模型更新。显然,在线学习时增量学习的特例,而增量学习可视为“批模式”的在线学习。

3. 迁移学习

3.1 原理

        Transfer Learning 将从源数据集学到的知识迁移到目标数据集上。虽然ImageNet数据集的图像大多跟XX无关,但在该数据集上训练的模型可以抽取较通用的图像特征,从而能够帮助识别边缘、纹理、形状和物体组成等,这些类似的特征对于识别XX也可能同样有效。

3.2 微调 Fine Tuning

微调是迁移学习的一种常用学习技术。其步骤如下:

1. 在源数据集上预训练一个NN模型,即源模型;
2. 创建一个目标模型(新的NN模型),它复制了源模型上除了输出层外所有的模型设计及其参数。

3. 为目标模型添加一个输出大小为目标数据集类别个数的输出层,并随机初始化该层的模型参数;
4. 在目标数据集上训练目标模型: 从头训练输出层,其余层的参数则基于源模型的参数微调得到。(一般来说,微调参数会使用较小的学习率,而从头训练输出层可以使用较大的学习率。)

两个假设:

(1)目标模型参数包含了源数据集上学习到的知识,且这些知识同样适用于目标数据集;
(2)源模型的输出层与源数据集的标签紧密相关,因此在目标模型中不予采用。

        当目标数据集远小于源数据集时,微调有助于提升模型的泛化能力。另外,微调的模型因为参数初始值更好,往往在相同迭代周期下会取得更高的精度。

4. 集成学习

4.1 Stacking

        核心思想:通过次级学习器(元学习器)来对初级学习器(个体学习器)进行结合。

        先从初始数据集训练出初级学习器,然后生成一个新数据集用于训练次级学习器。在这个新数据集中,初级学习器的输出被当作样例输入特征,而初始样本的标记仍被当作样例标记。

注意:

        次级学习器的输入属性表示和次级学习算法对Stacking集成的泛化性能有很大影响。有研究表明,将初级学习器的输出类概率作为次级学习器的输入属性,用多响应线性回归MLR作为次级学习算法效果较好,在MLR中使用不同的属性集更佳。

  • 1
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值