1. 定义
对称阵和反对称阵均:必为方阵
2)反对称阵(Skew Symmetric Matrix):
3)正定对称矩阵(Positive-Definite Symmetric Matrix ):实对称矩阵的所有的实特征值为正。
2. 特性
2.1 3x3反对称矩阵up to scale
3x3反对称矩阵的一个奇怪属性是:up to scale.
2.2 正定对称矩阵
2)它有唯一的分解: (K为上三角实矩阵,且对角元素为正),这就是柯列斯基分解(Cholesky factorization)。
证明如下:
D、E:是对角阵,U是正交阵,E的对角元素是D对应对角元素的平方根;V不是上三角阵,则进行RQ分解:
K是上三角矩阵,Q是旋转矩阵(正交阵)
3. 应用
3.1 特征值分解(Eigenvalue Decomposition)
1)对称矩阵分解: 如果A是实对称矩阵,则A可被分解为:,U是一个正交矩阵,D是一个实对角矩阵(real diagonal matrix);
则此实对称阵有实特征值(Eigen Values),且其特征向量(Eigen Vectors)是正交的。
2)反对称矩阵分解: 如果S是实反对称矩阵,则S可被分解为:,B是块对角矩阵(block-diagonal matrix),其形式如下:
注:S的特征向量是纯虚的,奇阶的反对称矩阵是奇异的(Singular)。
3.2 叉乘(Cross Products)
3.2.1 向量与反对称矩阵的相互表示
与向量a对应的反对称矩阵为:
注:任何3x3反对称矩阵可以写为,a为其对应的向量,矩阵奇异矩阵(Singular Matrix)
3.2.2 向量的叉乘定义
向量的叉乘:Cross Product 或Vector Product
反对称矩阵可以替换向量叉乘中的一个向量,其表示如下:
3.3 代数余子式和伴随矩阵(Cofactor and adjoint matrices)
1)设M是方阵,则M*是M的代数余子式(Cofactors)矩阵,且,是M去掉第i行和第j列生成的矩阵。
3)若M可逆,则:是M的逆的转置 (the inverse transpose of M)
5)若M是3x3矩阵(无论是否可逆),x和y是列向量,则有:
6)对于上式,设t=Mx,且M可逆(非奇异矩阵non-singular matrix),则有:
上式类似于基本矩阵(Fundamental Matrix)中的P’,基本矩阵与一对摄像机矩阵(如下)相对应,所以它可用于推导出“基本矩阵”
7)若是一个基本矩阵(一个3x3的奇异矩阵<非可逆>),则有,因此F可以分解为: